4.4 Article

Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain

期刊

BIOCHEMISTRY
卷 47, 期 37, 页码 9771-9780

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi800787m

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council Funding Source: Medline
  2. Wellcome Trust [066774] Funding Source: Medline

向作者/读者索取更多资源

Calmodulin (CaM) activates NO synthase (NOS) by binding to a 20 amino acid interdomain hinge in the presence of Ca(2+), inducing electrons to be transferred from the FAD to the heme of the enzyme via a mobile FMN domain. The activation process is influenced by a number of structural features, including an autoinhibitory loop, the C-terminal tail of the enzyme, and a number of phosphorylation sites. Crystallographic and other recent experimental data imply that the regulatory elements lie within the interface between the FAD- and FMN-binding domains, restricting the movement of the two cofactors with respect to each other. Arg1229 of rat neuronal NOS is a conserved residue in the FAD domain that forms one of only two electrostatic contacts between the domains. Mutation of this residue to Glu reverses its charge and is expected to induce an interdomain repulsion, allowing the importance of the interface and domain-domain motion to be probed. The charge-reversal mutation R1229E has three dramatic effects on catalysis: (i) hydride transfer from NADPH to FAD is activated in the CaM-free enzyme, (ii) FAD to FMN electron transfer is inhibited in both forms, and (iii) electron transfer from FMN to the surrogate acceptor cytochrome c is activated in the CaM-free enzyme. As a result, during steady-state turnover with cytochrome c, calmodulin now deactivates the enzyme and causes cytochrome c-dependent inhibition. Evidently, domain-domain separation is large enough in the mutant to accommodate another protein between the cofactors. The effects of this single charge reversal on three distinct catalytic events illustrate how each is differentially dependent on the enzyme conformation and support a model for catalytic motion in which steps i, ii, and iii occur in the hinged open, closed, and open states, respectively. This model is also likely to apply to related enzymes such as cytochrome P450 reductase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据