4.4 Article Proceedings Paper

Self-incompatibility in Papaver: identification of the pollen S-determinant PrpS

期刊

BIOCHEMICAL SOCIETY TRANSACTIONS
卷 38, 期 -, 页码 588-592

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BST0380588

关键词

calciut signalling; Papaver; pollen; programmed cell death; S-determinant; self-incompatibility

资金

  1. Biotechnology and Biological Sciences Research Council Funding Source: Medline

向作者/读者索取更多资源

Many flowering plants are hermaphrodite, posing the problem of self-fertilization and the subsequent loss of the genetic fitness of the offspring. To prevent this, many plants have developed a genetically controlled mechanism called self-incompatibility (SI). When the male and female S-determinants match, self (incompatible) pollen is recognized and rejected before fertilization can occur. In poppy (Papaver rhoeas), the pistil S-determinant (PrsS) is a small secreted protein that interacts with incompatible pollen, initiating a Ca2+-dependent signalling network. SI triggers several downstream events, including depolymerization of the cytoskeleton, phosphorylation of two soluble inorganic pyrophosphatases and an MAPK (mitogen-activated protein kinase). This culminates in PCD (programmed cell death) involving several caspase-like activities. The recent discovery of the Papaver pollen S-determinant PrpS marks a significant step forward in the understanding of the Papaver SI system. PrpS encodes a similar to 20 kDa predicted transmembrane protein which has no homology with known proteins It is specifically expressed in pollen, linked to the pistil S-determinant, and displays the high polymorphism expected of an S-locus determinant. The present review focuses on the discovery and characterization of PrpS which strongly support the hypothesis that Papaver SI is triggered by the interaction of PrsS and PrpS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据