4.7 Article

Thalidomide inhibits fibronectin production in TGF-β1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway

期刊

BIOCHEMICAL PHARMACOLOGY
卷 85, 期 11, 页码 1594-1602

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2013.02.038

关键词

Thalidomide; Keloid; Fibronectin; Mitogen-activated protein kinases (MAPKs); Fibroblasts; SMADS

资金

  1. National Science Council [NSC 99-2320-B-002-022-MY3]
  2. Cathay General Hospital, Taiwan, Republic of China [CGH-MR-9927]

向作者/读者索取更多资源

Keloids are characterized by the vigorously continuous production of extracellular matrix protein and aberrant cytokine activity in the dermis. There is a growing body of evidence that thalidomide, alpha-N-phthalimidoglutarimide, has anti-fibrotic properties. The aims were to examine possible therapeutic effects of thalidomide on fibronectin expression in transforming growth factor-beta 1 (TGF-beta 1)-treated normal fibroblasts (NFs) and keloid-derived fibroblasts (KFs) and the underlying mechanism of action, especially the involvement of mitogen-activated protein kinase (MAPKs) and Sma- and Mad-related family (Smads) pathways. In surgically removed human tissues, TGF-beta 1 and fibronectin immunoreactivity was high in keloid tissue, but barely detectable in normal tissue. TGF-beta 1 induced significant fibronectin expression in NFs and KFs and the effect was inhibited by pretreatment with thalidomide. TGF-beta 1 also induced phosphorylation of MAPKs (ERK1/2, p38, and JNK) and Smad2/3 and pretreatment with PD98059 (an ERK1/2 inhibitor), SB203580 (a p38 inhibitor), or SP600125 (a JNK inhibitor) inhibited TGF-beta 1-induced fibronectin expression. Furthermore, pretreatment with thalidomide inhibited the TGF-beta 1-induced phosphorylation of p38 and Smad3, but not that of ERK1/2, JNK, and Smad2. In addition, thalidomide pretreatment inhibited the TGF-beta-induced DNA binding activity of AP-1 and Smad3/4, caused fibronectin degradation by increasing the activity of matrix metalloproteinase 9, and decreased production of TGF-beta 1 and fibronectin and the number of fibroblasts in an in vivo keloid model. These results show that thalidomide has an antifibrotic effect on keloid fibroblasts that is caused by suppression of TGF-beta 1-induced p38 and Smad3 signaling. Our findings indicate that thalidomide may be a potential candidate drug for the treatment and prevention of keloids. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据