4.7 Article

Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: Antiparasitic activities of p38 MAPK inhibitors

期刊

BIOCHEMICAL PHARMACOLOGY
卷 76, 期 9, 页码 1068-1081

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2008.08.020

关键词

Echinococcus; Echinococcosis; Cestode; Parasite; p38 MAP kinase; Pyridinyl imidazole

资金

  1. Deutsche Forschungsgemeinschaft [SFB 479, 1141]

向作者/读者索取更多资源

Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a life-threatening disease with very limited treatment options. in search for novel drug targets, we concentrate on factors of the cellular signaling machinery and report herein the characterization of a novel gene, Emmpk2, which is expressed in the parasite's larval stage and which codes for a member of the mitogen-activated protein kinase (MAPK) family. On the amino acid sequence level, the encoded protein, EmMPK2, shares considerable homologies with p38 MAPKs from a wide variety of animal organisms but also displays several distinct differences, particularly in amino acid residues known to be involved in the regulation of enzyme activity. Upon heterologous expression in Escherichia coli, purified EmMPK2 showed prominent autophosphorylation activity and strongly elevated basal activity towards a MAPK substrate, when compared to the closest human orthologue, p38-alpha. EmMPK2 activity could be effectively inhibited in the presence of ML3403 and SB202190, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. When added to in vitro cultivated metacestode vesicles, SB202190 and particularly ML3403 led to dephosphorylation of EmMPK2 in the parasite and effectively killed parasite vesicles at concentrations that did not affect cultivated mammalian cells. Taken together, these results identify pyridinyl imidazoles as a novel class of anti-Echinococcus compounds and EmMPK2 as a promising target for the development of drugs against alveolar echinococcosis. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Pharmacology & Pharmacy

Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib

Paola Orlandi, Marta Banchi, Francesca Vaglini, Marco Carli, Stefano Aringhieri, Arianna Bandini, Carla Pardini, Cristina Viaggi, Michele Lai, Greta Ali, Alessandra Ottani, Eleonora Vandini, Patrizia Guidi, Margherita Bernardeschi, Veronica La Rocca, Giulio Francia, Gabriella Fontanini, Mauro Pistello, Giada Frenzilli, Daniela Giuliani, Marco Scarselli, Guido Bocci

Summary: This study investigates the role of MC4R in melanoma and the use of the selective antagonist ML in combination with vemurafenib. The results show that ML can inhibit melanoma cell proliferation and induce apoptosis through the inhibition of ERK1/2 phosphorylation and reduction of BCL-XL expression. The combination of vemurafenib and ML exhibits a synergistic effect in vitro and inhibits tumor growth in vivo without causing adverse effects.

BIOCHEMICAL PHARMACOLOGY (2024)

Article Pharmacology & Pharmacy

Cardiac human bitter taste receptors contain naturally occurring variants that alter function

Conor J. Bloxham, Katina D. Hulme, Fabrizio Fierro, Christian Fercher, Cassandra L. Pegg, Shannon L. O'Brien, Simon R. Foster, Kirsty R. Short, Sebastian G. B. Furness, Melissa E. Reichelt, Masha Y. Niv, Walter G. Thomas

Summary: Bitter taste receptors (T2Rs) are a type of G protein-coupled receptors that allow humans to detect aversive and toxic substances. This study characterized the functional properties of previously identified T2Rs in human cardiac tissues and their naturally occurring polymorphisms. The results showed differences in signaling among different T2R variants, and revealed a potential association between the T2R50 Tyr203 variant and cardiovascular disease.

BIOCHEMICAL PHARMACOLOGY (2024)

Article Pharmacology & Pharmacy

Carfilzomib suppressed LDHA-mediated metabolic reprogramming by targeting ATF3 in esophageal squamous cell carcinoma

Lu Chen, Huanying Shi, Wenxin Zhang, Yongjun Zhu, Haifei Chen, Zimei Wu, Huijie Qi, Jiafeng Liu, Mingkang Zhong, Xiaojin Shi, Tianxiao Wang, Qunyi Li

Summary: This study demonstrates that Carfilzomib exhibits potent anti-tumor activity against esophageal squamous cell carcinoma (ESCC) by triggering mitochondrial apoptosis and reprogramming cellular metabolism. It has been identified that activating transcription factor 3 (ATF3) plays a crucial role as a cellular target in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively counteracts the effects of Carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, ATF3 mediates the anti-tumor activity of Carfilzomib, suggesting its potential as a therapeutic agent for ESCC.

BIOCHEMICAL PHARMACOLOGY (2024)

Review Pharmacology & Pharmacy

Ferroptosis resistance in cancer: recent advances and future perspectives

Xing Zhang, Xiang Li, Ran Xia, Hong-Sheng Zhang

Summary: This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer and highlights the role of redox status and metabolism. Combination therapy for ferroptosis has great potential in treating resistant malignant tumors.

BIOCHEMICAL PHARMACOLOGY (2024)