4.5 Review

Non-canonical functions of the DNA methylome in gene regulation

期刊

BIOCHEMICAL JOURNAL
卷 451, 期 -, 页码 13-23

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20121585

关键词

chromatin; DNA methylation; H3K27me3; histone modification; Polycomb; Polycomb repressor complex 2 (PRC2); regulation of transcription

资金

  1. Medical Research Council
  2. Biotechnology and Biological Sciences Research Council
  3. Innovative Medicine Initiative Joint Undertaking (MARCAR project)
  4. British Heart Foundation
  5. Biotechnology and Biological Sciences Research Council [BB/K01384X/1, BB/E023355/1] Funding Source: researchfish
  6. Medical Research Council [MC_PC_U127574433, MC_U127574433] Funding Source: researchfish
  7. BBSRC [BB/K01384X/1, BB/E023355/1] Funding Source: UKRI
  8. MRC [MC_PC_U127574433, MC_U127574433] Funding Source: UKRI

向作者/读者索取更多资源

Methylation of the cytosine base in DNA, DNA methylation, is an essential epigenetic mark in mammals that contributes to the regulation of transcription. Several advances have been made in this area in recent years, leading to a leap forward in our understanding of how this pathway contributes to gene regulation during embryonic development, and the functional consequences of its perturbation in human disease. Critical to these advances is a comprehension of the genomic distribution of modified cytosine bases in unprecedented detail, drawing attention to genomic regions beyond gene promoters. In addition, we have a more complete understanding of the multifactorial manner by which DNA methylation influences gene regulation at the molecular level, and which genes rely directly on the DNA methylome for their normal transcriptional regulation. It is becoming apparent that a major role of DNA modification is to act as a relatively stable, and mitotically heritable, template that contributes to the establishment and maintenance of chromatin states. In this regard, interplay is emerging between DNA methylation and the PcG (Polycomb group) proteins, which act as evolutionarily conserved mediators of cell identity. In the present paper we review these aspects of DNA methylation, and discuss how a multifunctional view of DNA modification as an integral part of chromatin organization is influencing our understanding of this epigenetic mark's contribution to transcriptional regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据