4.5 Article

Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue

期刊

BIOCHEMICAL JOURNAL
卷 434, 期 -, 页码 435-444

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20101471

关键词

C-terminal domain; RNA polymerase II; transcription regulation; transcription termination; tyrosine phosphatase

资金

  1. National Institutes of Health [R03DA030556]
  2. University of Texas [19171662]

向作者/读者索取更多资源

Reversible phosphorylation of the CTD (C-terminal domain) of the eukaryotic RNA polymerase II largest subunit represents a critical regulatory mechanism during the transcription cycle and mRNA processing. Ssu72 is an essential phosphatase conserved in eukaryotes that dephosphorylates phosphorylated See of the CTD heptapeptide. Its function is implicated in transcription initiation, elongation and termination, as well as RNA processing. In the present paper we report the high resolution X-ray crystal structures of Drosophila melanogaster Ssu72 phosphatase in the apo form and in complex with an inhibitor mimicking the transition state of phosphoryl. transfer. Ssu72 facilitates dephosphorylation of the substrate through a phosphoryl-enzyme intermediate, as visualized in the complex structure of Ssu72 with the oxo-anion compound inhibitor vanadate at a 2.35 angstrom (1 angstrom = 0.1 nm) resolution. The structure resembles the transition state of the phosphoryl transfer with vanadate exhibiting a trigonal bi-pyramidal geometry covalently bonded to the nucleophilic cysteine residue. Interestingly, the incorporation of oxo-anion compounds greatly stabilizes a flexible loop containing the general acid, as detected by an increase of melting temperature of Ssu72 detected by differential scanning fluorimetry. The Ssu72 structure exhibits a core fold with a similar topology to that of LMWPTPs [low-molecular-mass PTPs (protein tyrosine phosphatases)], but with an insertion of a unique 'cap' domain to shelter the active site from the solvent with a deep groove in between where the CTD substrates bind. Mutagenesis studies in this groove established the functional roles of five residues (Met(17), Pro(46), Asp(51), Tyr(77) and Met(85)) that are essential specifically for substrate recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据