4.6 Article

Electrospun protein-CNT composite fibers and the application in fibroblast stimulation

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2018.08.157

关键词

Collagen; Silk; Carbon nanotube; Electrospin; Fibroblasts; Electrical stimulation

资金

  1. NIH Clinical and Translational Science Award Consortium through the Institute for Translational Medicine at U Chicago

向作者/读者索取更多资源

Functional biopolymer scaffolds are in high demand for tissue regeneration. In this study, we incorporated functionalized CNT in collagen or silk protein solution to generate biocomposite fibers by electrospinning. The addition of CNT reinforced the strength of the scaffolds and rendered the fibers electrical conductivity to not only facilitate the E-spun fiber formation but also grant the fibers an additional functionality that can be utilized for cell stimulation. Considering fiber dimension, alignment, mechanical strength, electrical conductivity and biocompatibility, silk-CNT fibers containing a minute amount of CNT (0.05%) outperformed other fiber types. The modulation effect of these fibers was examined by their application in inducing polarization and activation of fibroblasts with cellular deficit. While the fibroblasts on both collagen-CNT and silk-CNT fibers synthesized a substantially higher level of collagen type III (COLIII) than cells on pure protein fibers to reduce the abnormally high COLI/COLIII ratio, electrical stimulation boosted the collagen productivity by 20 folds in cells on silk-CNT than on collagen-CNT due to silk-CNT's high electrical conductivity. The developed approach can be potentially utilized to remedy the dysfunctional fibroblasts for therapeutic treatment of diseases and health conditions associated with collagen disorder. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据