4.6 Article

Is the idea of a fast block to polyspermy based on artifact?

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2014.03.157

关键词

Polyspermy; Electrical block hypothesis; Voltage clamp; Artifact; Sea urchin eggs; Actin rich sites

向作者/读者索取更多资源

This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据