4.6 Article

A compound CP-31398 suppresses excitotoxicity-induced neurodegeneration

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2013.08.052

关键词

CP-31398; Excitotoxicity; Mitochondrial dysfunction; Neurodegeneration; p53

资金

  1. Osaka University Global COE Program (Frontier Biomedical Science Underlying Organelle Network Biology)
  2. Kurata Memorial Hitachi Science and Technology Foundation
  3. Takeda Science Foundation
  4. Japan Health Foundation

向作者/读者索取更多资源

Neurodegeneration causes dysfunction and degeneration of neurons and is triggered by various factors including genetic defects, free radicals, injury, and glutamate excitotoxicity. Among those, glutamate excitotoxicity is implicated in chronic disorders including AD and ALS, and in acute insults in the CNS including traumatic brain injury. Neurological disorders show hallmark morphological abnormalities such as axon degeneration and cell body death. The molecular mechanisms underlying excitotoxicity-induced neurodegeneration are complex and deciphering a molecular mechanism from one angle is beneficial to understand the process, however, still difficult to develop strategies to suppress excitotoxicity-induced degeneration due to existence of other mechanisms. Thus, directly identifying compounds that can modulate excitotoxicity-induced neurodegeneration and subsequently clarifiying the molecular mechanism is a valid approach to develop effective strategies to suppress neurodegeneration. We searched for compounds that can suppress excitotoxicity-induced neurodegeneration and found that CP-31398, a known compound that can rescue the structure and function of the tumor suppressor protein p53 mutant form and stabilize the active conformation of the p53 wild-type form, suppresses excitotoxicity-induced axon degeneration and cell body death. Moreover, CP-31398 suppresses mitochondrial dysfunction which has a strong correlation with excitotoxicity. Thus, our findings identify a compound that can serve as a novel modulator of neurodegeneration induced by glutamate excitotoxicity. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据