4.6 Article

Molecular dynamics study of carbon nanotube as a potential dual-functional inhibitor of HIV-1 integrase

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2013.06.009

关键词

HIV-1 integrase; Integrase inhibitor; Carbon nanotube; Drug delivery; Molecular dynamics simulation

资金

  1. HI-tech Research and Development Program of China [2008AA02Z311]
  2. Shanghai Leading Academic Discipline [B111]
  3. Shanghai Supercomputer Center (SSC)

向作者/读者索取更多资源

HIV-1 integrase (IN) plays an important role in integrating viral DNA into human genome, which has been considered as the drug target for anti-AIDS therapy. The appearance of drug-resistance mutants urgently requires novel inhibitors that act on non-active site of HIV-1 IN. Nanoparticles have such unique geometrical and chemical properties, which inspires us that nanoparticles like nanotubes may serve as better HIV-1 IN inhibitors than the conventional inhibitors. To test this hypothesis, we performed molecular dynamics (MD) simulation to study the binding of a carbon nanotube (CNT) to a full-length HIV-1 IN. The results showed that the CNT could stably bind to the C-terminal domain (CTD) of HIV-1 IN. The CNT also induced a domain-shift which disrupted the binding channel for viral DNA. Further MD simulation showed that a HIV-1 IN inhibitor, 5CITEP was successfully sealed inside the uncapped CNT. These results indicate that the CNT may serve as a potential dual-functional HIV-1 IN inhibitor, not only inducing conformation change as an allosteric inhibitor but also carrying small-molecular inhibitors as a drug delivery system. (c) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据