4.6 Article

Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2012.04.094

关键词

APAF-1; Apoptosis; Caspases; Cytochrome c death induced signaling; complex; Electric fields; Electroporation; Jurkat clones

资金

  1. Center for Bioelectrics

向作者/读者索取更多资源

NsPEF ablation induces apoptosis markers, but specific cell death pathways have not been fully defined. To identify nsPEF-activated cell death pathways, wildtype human Jurkat cells and clones with deficiencies in extrinsic and intrinsic apoptosis pathways were investigated. NsPEFs activated caspase isozymes and induced identical electric field-dependent cell death in clones deficient in FADD or caspase-8, indicating that extrinsic apoptosis pathways were not activated. This was confirmed when cytochrome c release was shown to be unaffected by the pan caspase inhibitor, z-VAD-fmk. NsPEF-treated APAF-1-silenced cells did not exhibit caspase-3/7 and -9 activities and corresponding electric field-dependent cell death in this clone was attenuated compared to its vector control at low, but not at high electric fields. These data demonstrate that nsPEFs induce intrinsic apoptosis activate by cytochrome c release from mitochondria through an APAF-1- and caspase-dependent pathway as well as through caspase-independent mechanisms that remain to be defined. Furthermore, the results establish that nsPEFs can overcome natural and oncogenic mechanisms that promote cell survival through inhibition of apoptosis and other cell death mechanisms. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据