4.6 Article

Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: Implications for paracrine activities in bone regeneration

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2012.08.095

关键词

Mesenchymal stem cells and paracrine activities; Mesenchymal stem cells; Bone morphogenetic protein 2; Bone regeneration

资金

  1. Tobacco Cure Grant
  2. Brittle Bone Foundation Fellowship

向作者/读者索取更多资源

The mechanisms by which multipotent mesenchymal stromal cells (MSCs) contribute to tissue repair following transplantation into host tissues remains poorly understood. Current concepts suggest that, in addition to differentiation into cells of the host tissues, MSCs also generate trophic factors that modulate host tissue microenvironment to aid in the repair process. In this communication, we assessed whether factors secreted by MSCs undergoing osteogenic differentiation induce expression of osteoblast markers in exogenous MSCs as well as their migration. Murine MSCs were cultured in osteogenic medium, and at different time points, medium conditioned by the cells was collected and assessed for its effects on differentiation and migration of exogenous MSCs. In addition, we determined whether MSCs infused into mice femurs expressed genes encoding for factors predicted to play a role in paracrine activities. The results showed that MSCs maintained in osteogenic medium, secreted factors at specific time points that induced alkaline phosphatase activity (ALP) in exogenous MSCs as well as their migration. MSCs infused into mice femurs and retrieved at different days expressed genes that encoded predicted factors that play a role in cell differentiation and migration. Neutralizing antibodies to bone morphogenetic protein-2 (BMP-2) led to the decrease in ALP activity by exogenous MSCs. These data demonstrated that, as MSCs differentiate toward osteogenic lineage, they secrete factors that induce recruitment and differentiation of endogenous progenitors. These data reveal mechanisms by which donor MSCs may contribute to the bone reparative process and provide a platform for designing approaches for stem cell therapies of musculoskeletal disorders. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据