4.6 Article

Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of Spinal Muscular Atrophy

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2011.11.121

关键词

Survival Motor Neuron (SMN); Spinal Muscular Atrophy (SMA); scAAV; Gene therapy; Neurodegeneration; Therapeutics

资金

  1. National Institutes of Health [R01 HD054413, R01 HS41584]
  2. SMA Europe
  3. [NIGMS T32]

向作者/读者索取更多资源

Spinal Muscular Atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). SMA, however, is not due to complete absence of SMN, rather a low level of functional full-length SMN is produced by a nearly identical copy gene called SMN2. Despite SMN's ubiquitous expression, motor neurons are preferentially affected by low SMN levels. Recently gene replacement strategies have shown tremendous promise in animal models of SMA. In this study, we used self-complementary Adeno Associated Virus (scAAV) expressing full-length SMN cDNA to compare two different routes of viral delivery in a severe SMA mouse model. This was accomplished by injecting scAAV9-SMN vector intravenously (IV) or intracerebroventricularly (ICV) into SMA mice. Both routes of delivery resulted in a significant increase in lifespan and weight compared to untreated mice with a subpopulation of mice surviving more than 200 days. However, the ICV injected mice gained significantly more weight than their IV treated counterparts. Likewise, survival analysis showed that ICV treated mice displayed fewer early deaths than IV treated animals. Collectively, this report demonstrates that route of delivery is a crucial component of gene therapy treatment for SMA. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据