4.6 Article

Protein-tyrosine phosphatase-kappa regulates CD4+ T cell development through ERK1/2-mediated signaling

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2009.09.117

关键词

T cell; Protein-tyrosine phosphatase; Thymus

资金

  1. Japan Society for the Promotion of Science
  2. Takeda Science Foundation
  3. Uehara Memorial Foundation
  4. Mochida Memorial Foundation

向作者/读者索取更多资源

T cells express diverse antigen-specific receptors and are required for eradicating pathogens and transformed cells. T cells expressing CD4 acquire helper effector functions and those expressing CD8 exert cytotoxic activity after antigen recognition. The protein-tyrosine phosphatase, receptor type kappa (PTPRK) is mutated in LEC rats, resulting in impaired CD4(+) T cell development in the thymus. However, the molecular mechanism of PTPRK controlling CD4(+) T cell development remains unclear. We demonstrate herein that inhibition of PTPRK by transducing a dominant negative form of the intracellular domain of PTPRK (PTPRK-ICD-DN) in bone marrow-derived stem cells suppresses the development of CD4(+) T cells. The inhibition of PTPRK by PTPRK-ICD-DN or short-hairpin RNA for PTPRK attenuates ERK1/2 phosphorylation in T cells after PMA and ionomycin stimulation. Total thymocytes from LEC rats also showed weaker phosphorylation of ERK1/2 after PMA and ionomycin stimulation than control thymocytes. Furthermore, inhibition of PTPRK by PTPRK-ICD-DN suppressed MEK1/2 and c-Raf phosphorylation, which is required for ERK1/2 phosphorylation. These data indicate that PPTRK positively regulates ERK1/2 phosphorylation, which impacts CD4(+) T cell development. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据