4.6 Article

Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR

期刊

BASIC RESEARCH IN CARDIOLOGY
卷 106, 期 6, 页码 1069-1085

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-011-0231-7

关键词

Exercise; Cytokines; Angiotensin; Hypertension; Oxidative stress; Brain

资金

  1. National Heart, Lung, and Blood Institute [HL-80544]

向作者/读者索取更多资源

Recently, exercise has been recommended as a part of lifestyle modification for all hypertensive patients; however, the precise mechanisms of its effects on hypertension are largely unknown. Therefore, this study aimed to investigate the mechanisms within the brain that can influence exercise-induced effects in an animal model of human essential hypertension. Young normotensive WKY rats and SHR were given moderate-intensity exercise for 16 weeks. Blood pressure was measured bi-weekly by tail-cuff method. Animals were then euthanized; paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM), important cardiovascular regulatory centers in the brain, were collected and analyzed by real-time RT-PCR, Western blot, EIA, and fluorescent microscopy. Exercise of 16-week duration attenuated systolic, diastolic, and mean arterial pressure in SHR. Sedentary SHR exhibited increased pro-inflammatory cytokines (PICs) and decreased anti-inflammatory IL-10 levels in the PVN and RVLM. Furthermore, SHRsed rats exhibited elevated levels of ACE, AT1R, and decreased levels of ACE2 and receptor Mas in the PVN and RVLM. Chronic exercise not only prevented the increase in PICs (TNF-alpha, IL-1 beta), ACE, and AT1R protein expression in the brain of SHR, but also dramatically upregulated IL-10, ACE2, and Mas receptor expression in SHR. In addition, these changes were associated with reduced plasma AngII levels, reduced neuronal activity, reduced NADPH-oxidase subunit gp91(phox) and inducible NO synthase in trained SHRs indicating reduced oxidative stress. These results suggest that chronic exercise not only attenuates PICs and the vasoconstrictor axis of the RAS but also improves the anti-inflammatory defense mechanisms and vasoprotective axis of the RAS in the brain, which, at least in part, explains the blood pressure-lowering effects of exercise in hypertension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据