4.8 Article

Entering the lysosome through a transient gate by chaperone-mediated autophagy

期刊

AUTOPHAGY
卷 4, 期 8, 页码 1101-1103

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/auto.7150

关键词

autophagy; chaperones; membrane dynamics; membrane proteins; protein translocation

资金

  1. NIH/NIA [AG021904, AG025355, DKO41918]
  2. Ellison Medical Foundation Award

向作者/读者索取更多资源

A subset of cytosolic proteins can be selectively degraded in lysosomes through chaperone-mediated autophagy. The lysosomal-membrane protein type 2A (LAMP-2A) acts as the receptor for the substrates of chaperone-mediated autophagy (CMA), which should undergo unfolding before crossing the lysosomal membrane and reaching the lumen for degradation. Translocation of substrates is assisted by chaperones on both sides of the membrane, but the actual steps involved in this process and the characteristics of the translocation complex were, for the most part, unknown. We have now found that rather than a stable translocon at the lysosomal membrane, CMA substrates bind to monomers of LAMP-2A driving the organization of this protein into a high molecular weight multimeric complex that mediates translocation. Assembly and disassembly of LAMP-2A into and from this complex is dynamic and it is regulated by hsc70 and hsp9o, the two lysosomal chaperones related to CMA. This work thus unveils a unique mechanism of protein translocation across the lysosomal membrane, which involves only transient discontinuity of the membrane. The possible advantages of this transitory lysosomal translocon are discussed in light of the unique properties of the lysosomal compartment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据