4.5 Article

Zerovalent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines

期刊

JOURNAL OF APPLIED TOXICOLOGY
卷 36, 期 3, 页码 385-393

出版社

WILEY
DOI: 10.1002/jat.3220

关键词

Nanoparticles; dissolution; cytotoxicity; gene expression; uptake

资金

  1. CARIPLO grant [2013-1052]
  2. ECSIN grant

向作者/读者索取更多资源

We have considered nanoparticles (NPs) of Fe, Co and Ni, three transition metals sharing similar chemical properties. NP dissolution, conducted by radioactive tracermethod and inductively coupled plasmamass spectrometry, indicated that NiNPs and FeNPs released in the medium a much smaller amount of ions than that released by Co NPs. The two considered methodological approaches, however, gave comparable but not identical results. All NPs are readily internalized by the cells, but their quantity inside the cells is less than 5%. Cytotoxicity and gene expression experiments were performed on SKOV-3 and U87 cells. In both cell lines, CoNPs and NiNPs were definitely more toxic than FeNPs. Real-time polymerase chain reaction experiments aimed to evaluate modifications of the expression of genes involved in the cellular stress response (HSP70, MT2A), or susceptible tometal exposure (SDHB1 and MLL), or involved in specific cellular processes (caspase3, IQSEC1 and VMP1), gave different response patterns in the two cell lines. HSP70, for example, was highly upregulated by CoNPs and NiNPs, but only in SKOV-3 cell lines. Overall, this work underlines the difficulties in predicting NP toxicological properties based only on their chemical characteristics. We, consequently, think that, at this stage of our knowledge, biological effects induced by metal-based NPs should be examined on a case-by-case basis following studies on different in vitro models. Moreover, with the only exception of U87 exposed to Ni, our results suggest that metallic NPs have caused, on gene expression, similar effects to those caused by their corresponding ions. Copyright (C) 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据