4.7 Article

Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition

期刊

ATMOSPHERIC ENVIRONMENT
卷 79, 期 -, 页码 566-575

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2013.07.058

关键词

PM; Ultrafine; Reactive oxygen species; Water-solubility; Los Angeles basin

资金

  1. South Coast Air Quality Management District (SCAQMD) [11527]
  2. USC Provost's and Viterbi's Ph.D. fellowships

向作者/读者索取更多资源

Seasonal and spatial variation in redox activity of quasi-ultrafine particles (PM0.25) and its association with chemical species was investigated at 9 distinct sampling sites across the Los Angeles metropolitan area. Biologically reactive oxygen species (ROS) assay (generation of ROS in rat alveolar macrophage cells) was employed in order to assess the redox activity of PM0.25 samples. Seasonally, fall and summer displayed higher volume-based ROS activity (i.e. ROS activity per unit volume of air) compared to spring and winter. ROS levels were generally higher at near source and urban background sites compared to rural receptor locations, except for summer when comparable ROS activity was observed at the rural receptor sites. Univariate linear regression analysis indicated association (R > 0.7) between ROS activity and organic carbon (OC), water soluble organic carbon (WSOC) and water soluble transition metals (including Fe, V, Cr, Cd, Ni, Zn, Mn, Pb and Cu). A multivariate regression method was also used to obtain a model to predict the ROS activity of PM0.25, based on its water-soluble components. The most important species associated with ROS were Cu and La at the source site of Long Beach, and Fe and V at urban Los Angeles sites. These metals are tracers of road dust enriched with vehicular emissions (Fe and Cu) and residual oil combustion (V and La). At Riverside, a rural receptor location, WSOC and Ni (tracers of secondary organic aerosol and metal plating, respectively) were the dominant species driving the ROS activity. At Long Beach, the multivariate model was able to reconstruct the ROS activity with a high coefficient of determination (R-2 = 0.82). For Los Angeles and Riverside, however, the regression models could only explain 63% and 68% of the ROS activity, respectively. The unexplained portion of the measured ROS activity is likely attributed to the nature of organic species not captured in the organic carbon (OC) measurement as well as non-linear effects, which were not included in our linear model. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据