4.7 Article

Heterogeneous light-induced ozone processing on the organic coatings in the atmosphere

期刊

ATMOSPHERIC ENVIRONMENT
卷 43, 期 9, 页码 1683-1692

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2008.12.011

关键词

Aerosol; Irradiation; Surface reaction; Gas chromatography-mass spectrometry; Proton transfer reaction-mass spectrometry; DFT calculations

向作者/读者索取更多资源

Many of the more recent studies concerning heterogeneous reactions of atmospheric interest, carry, in some cases, much more details but still follow the basic philosophy of the first pioneering studies. Therefore, in this study the accent is put on the additional complexities that arise when the aerosols of interest have more complex compositions. Hence, it is attempted to identify the products following the simultaneous ozone processing and light irradiation on particles coated with 4-phenoxyphenol in the presence of 4-carboxybenzophenone as a photosensitizer. In order to reveal a more complete picture on the fate of these aromatic compounds under controlled experimental conditions, different analytical tools such as gas chromatography coupled to mass spectrometry (GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS) have been applied. Several surface bound products were identified via GC-MS and some of them (phenol, hydroquinone, catechol, 4-hydroxybenzoic acid, benzoic acid, fumaric acid, terephthalic acid, maleic acid, 1,2,4-trihydroxybenzene and 4,4'-oxydiphenol) confirmed with standards. The main volatile secondary products as identified by PTR-MS in this Study were formic acid, phenol and p-benzoquinone. A reaction mechanism was proposed and density functional theory calculations were performed in order to elucidate the initial steps of the ozonolysis reaction on 4-phenoxyphenol in the presence of 4-carboxybenzophenone. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据