4.5 Article

High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 119, 期 11, 页码 1297-1302

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00499.2015

关键词

anaerobic metabolism; gene regulation; Hif-1 alpha; high-intensity training; skeletal muscle introduction

向作者/读者索取更多资源

It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1 alpha (Hif-1 alpha), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1 alpha accumulation using ethyl 3,4-dihy-droxybenzoate (EDHB) to assess the potential role of Hif-1 alpha in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1 alpha in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1 alpha protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1 alpha and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1 alpha as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1 alpha is a key regulator in the metabolic adaptation to high-intensity training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据