4.6 Article

RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 755, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/755/1/L21

关键词

celestial mechanics; planets and satellites: dynamical evolution and stability

资金

  1. NSF [AST-0645416]

向作者/读者索取更多资源

We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only similar to 10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29: 34 resonance with the nearby first-order 6: 7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for similar to 4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations (similar to 200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据