4.7 Article

MAGNETIC FIELD STRENGTH MAPS FOR MOLECULAR CLOUDS: A NEW METHOD BASED ON A POLARIZATION-INTENSITY GRADIENT RELATION

期刊

ASTROPHYSICAL JOURNAL
卷 747, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/747/1/79

关键词

ISM: clouds; ISM: individual objects (W51 e2); ISM: magnetic fields; polarization

资金

  1. NSC [NSC97-2112-M-001-007-MY3]

向作者/读者索取更多资源

Dust polarization orientations in molecular clouds often tend to be close to tangential to the Stokes I dust continuum emission contours. The magnetic field and the emission gradient orientations, therefore, show some correlation. A method is proposed, which-in the framework of ideal magnetohydrodynamics (MHD)-connects the measured angle between magnetic field and emission gradient orientations to the total field strength. The approach is based on the assumption that a change in emission intensity (gradient) is a measure for the resulting direction of motion in the MHD force equation. In particular, this new method leads to maps of position-dependent magnetic field strength estimates. When evaluating the field curvature and the gravity direction locally on a map, the method can be generalized to arbitrary cloud shapes. The technique is applied to high-resolution (similar to 0 ''.7) Submillimeter Array polarization data of the collapsing core W51 e2. A tentative similar to 7.7 mG field strength is found when averaging over the entire core. The analysis further reveals some structures and an azimuthally averaged radial profile similar to r(-1/2) for the field strength. Maximum values close to the center are around 19 mG. The currently available observations lack higher resolution data to probe the innermost part of the core where the largest field strength is expected from the method. Application regime and limitations of the method are discussed. As a further important outcome of this technique, the local significance of the magnetic field force compared to the other forces can be quantified in a model-independent way, from measured angles only. Finally, the method can potentially also be expanded and applied to other objects (besides molecular clouds) with measurements that reveal the field morphology, as, e. g., Faraday rotation measurements in galaxies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据