4.7 Article

Pyrolytic appraisal of the lignin signature in soil humic acids: Assessment of its usefulness as carbon sequestration marker

期刊

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
卷 113, 期 -, 页码 107-115

出版社

ELSEVIER
DOI: 10.1016/j.jaap.2014.11.010

关键词

Lignin; Humic acids; Humification mechanisms; Calcimorphic soils

资金

  1. Spanish Ministry of Science and Innovation [CTM2005-04739/CGL2008-04926/CARBORAR, CGL2011-27493/GEOFIRE, CGL2012-38655-C04-01]
  2. CCMA-CSIC via I3P Program
  3. European Social Fund
  4. Juan de la Cierva [2008-39669]
  5. Marie Curie Intra-European Fellowship [FP7-PEOPLE-2013-IEF, 623393]

向作者/读者索取更多资源

Lignin markers in humic acids (HA, the alkali-soluble, acid-insoluble soil organic matter fraction) molecular features are explored to assess the extent to which plant biomacromolecules are progressively transformed by humification processes leading to stable C-forms in soils. Humic acids extracted from a collection of mountain calcimorphic soils from Sierra Maria-Los Velez Natural Park (Southeastern Spain) under different use and management practices were studied in detail by visible and infrared (FT-IR) spectroscopies and analytical pyrolysis (Py-GC/MS). The HAs display a more or less marked lignin pattern defined by characteristic methoxyphenol assemblages released after pyrolysis that are associated to a typical infrared pattern including absorption frequencies bands at 1510, 1460, 1420, 1270, 1230 and 1030 cm(-1). This variability in the HA spectroscopic and pyrolytic patterns was used as a source of molecular-level surrogates to establish the balance between complementary mechanisms of soil C sequestration i.e., a selective preservation of lignin associated to raw organic matter and other plant-inherited macromolecules, or alternative mechanisms involving microbial breakdown or plant precursors and its condensation with microbial metabolites. We found that HAs in which the lignin signature was comparatively less marked also show high optical density values suggesting unsubstituted, condensed aromatic units and a chaotic organic structure, pointing to the presence of highly resilient carbon forms. Upon analytical pyrolysis, one group of HAs produced major yields of methoxyl-lacking aromatics (alkylbenzenes and allcylphenols), and poor yields of alkyl compounds, which suggest efficient cleavage of biomacromolecules and the occurrence of active microbial synthesis and condensation processes. In fact, these HAs also displayed broadband IR spectra, and visible spectra showing high optical density and polynuclear quinoid chromophors considered of fungal origin. Other group of HAs yielded upon pyrolysis conspicuous series of methoxyphenols and well-defined alkyl series (alkanes, alkenes and fatty acids). The IR spectra also displayed clear lignin and amide bands, as well as intense 2920 cm(-1) band and a low optical density, indicative of a marked aliphatic character. This latter is interpreted as the result of recent diagenetic alteration processes of young organic matter and suggests that C sequestration mechanisms in these soils are mainly based on the stabilization of HAs from plant biomacromolecules and aliphatic structures. These differential lignin alteration patterns indicate that HAs are responsive to soil C sequestration mechanisms, which in the studied soils seem to relay upon microtopographical features rather than to changes in soil use and management. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据