4.0 Article

Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in Fibromyalgia

期刊

ARTHRITIS AND RHEUMATISM
卷 58, 期 3, 页码 903-907

出版社

WILEY-LISS
DOI: 10.1002/art.23223

关键词

-

资金

  1. NCCIH NIH HHS [K01-AT-01111-01] Funding Source: Medline
  2. NCRR NIH HHS [M01-RR-000042, K12-RR-017607-01] Funding Source: Medline

向作者/读者索取更多资源

Objective. Fibromyalgia (FM) is a chronic widespread pain condition that is thought to arise from augmentation of central neural activity. Glutamate (Glu) is an excitatory neurotransmitter that functions in pain-processing pathways. This study was carried out to investigate the relationship between changing levels of Glu within the insula and changes in multiple pain domains in patients with FM. Methods. Ten patients with FM underwent 2 sessions of proton magnetic resonance spectroscopy (H-MRS) and 2 sessions of functional magnetic resonance imaging (FMRI), each conducted before and after a nonpharmacologic intervention to reduce pain. During H-MRS, the anterior and posterior insular regions were examined separately using single-voxel spectroscopy. The levels of Glu and other metabolites were estimated relative to levels of creatine (Cr) (e.g., the Glu/Cr ratio). During FMRI, painful pressures were applied to the thumbnail to elicit neuronal activation. Experimental pressure-evoked pain thresholds and clinical pain ratings (on the Short Form of the McGill Pain Questionnaire [SF-MPQ]) were also assessed prior to each imaging session Results. Both experimental pain (P = 0.047 versus pretreatment) and SF-MPQ-rated clinical pain (P = 0.043 versus pretreatment) were reduced following treatment. Changes from pre- to posttreatment in Glu/Cr were negatively correlated with changes in experimental pain thresholds (r = -0.95, P < 0.001) and positively correlated with changes in clinical pain (r = 0.85, P = 0.002). Changes in the FMRI-determined blood oxygenation level-dependent effect (a measure of neural activation) were positively correlated with changes in Glu/Cr within the contralateral insula (r = 0.81, P = 0.002). Conclusion. Changes in Glu levels within the insula are associated with changes in multiple pain domains in patients with FM. Thus, H-MRS data may serve as a useful biomarker and surrogate end point for clinical trials of FM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据