4.5 Article

COMPARATIVE ANALYSES OF PROTEOLYTIC ACTIVITIES IN SEVEN SPECIES OF SYNANTHROPIC ACARIDID MITES

期刊

出版社

WILEY
DOI: 10.1002/arch.20388

关键词

protease; digestion; enzyme; allergen; synanthropic acaridid mite

资金

  1. Czech Republic [GP525/07/P253]
  2. Ministry of Agriculture of the Czech Republic [MZE 0002700604]
  3. Ministry of Education, Youth and Sports, Czech Republic
  4. COST FA0701 action [OC09034]

向作者/读者索取更多资源

Microplate assays with 96 wells were optimized to screen proteolytic activities in mite homogenates. Whole-mite extracts of Acarus siro, Aleuroglyphus ovatus, Tyrophagus putrescentiae, Tyroborus lini, Carpoglyphus lactis, Lepidoglyphus destructor, and Dermatophagoides farinae exhibited non-specific proteolytic activity in buffers from pH 2 to 12, and three peaks of highest activity at pH 3, 5-6, and 10 were distinguished. The reducing agent Tris(2-carboxyethyl) phosphine hydrochloride decreased general proteolytic activity on azocasein at pH 5 and 6. The results obtained on two non-specific substrates, azocasein and azoalbumin, showed highly different ranks of the species at pH 5 and 6. Proteolytic activities toward N-alpha-Benzoyl-D,L-arginine 4-nitroanilide hydrochloride, N-Succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine 4-nitroanilide, N-Succinyl-L-alanyl-L-alanyl-L-alanine 4-nitroanilide, Benzyloxycarbonyl-L-arginine-L-arginyl 4-nitroanilide, and N-Methoxysuccinyl-L-alanyl-L-alanyl-L-prolyl-L-methionine 4-nitroanilide (MAAPMpNA) were highest at alkaline pH, but the activity toward MAAPMpNA was also high at pH 5 and 6. In contrast, N-Succinyl-L-alanyl-L-alanyl-L-phenylalanine 4-nitroanilide (AAPpNA) and L-arginyl 4-nitroanilide (ArgpNA) had the highest activity recorded at pH 6. The high activities observed on AAPpNA, ArgpNA, and MAAPMpNA at digestive pH suggest that enzymes present in these extracts could have the majority of proteolysis in the mite gut. Evidence of the presence of proteolytic activities on all tested substrates and in all the tested mite homogenates suggests that the proteolytic activities may contribute to allergenicity. Poor or undetected hydrolytic activities of mite extracts toward substrates for keratin and collagen at digestive pH underline the importance of ecological interactions between mites and microorganisms in the utilization of such substrates. (c) 2010 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据