4.6 Review

Acatalasemia and diabetes mellitus

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 525, 期 2, 页码 195-200

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2012.02.005

关键词

Acatalasemia; Diabetes; Reactive oxygen species; Catalase; Hydrogen peroxide

资金

  1. Hungarian Scientific Research Fund (OTKA) [T 71902]

向作者/读者索取更多资源

The enzyme catalase catalyzes the breakdown of hydrogen peroxide into oxygen and water. It is the main regulator of hydrogen peroxide metabolism. Hydrogen peroxide is a highly reactive small molecule formed as a natural byproducts of energy metabolism. Excessive concentrations may cause significant damages to protein, DNA, RNA and lipids. Low levels in muscle cells, facilitate insulin signaling. Acatalasemia is a result of the homozygous mutations in the catalase gene, has a worldwide distribution with 12 known mutations. Increased hydrogen peroxide, due to catalase deficiency, plays a role in the pathogenesis of several diseases such as diabetes mellitus. Diabetes mellitus is a disorder caused by multiple genetic and environmental factors. Examination of Hungarian diabetic and acatalasemic patients showed that an increased frequency of catalase gene mutations exists among diabetes patients. Inherited catalase deficiency may increase the risk of type 2 diabetes mellitus, especially for females. Early onset of type 2 diabetes occurs with inherited catalase deficiency. Low levels of SOD and glutathione peroxidase could contribute to complications caused by increased oxidative stress. (c) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Activation of the TGF-81/EMT signaling pathway by claudin-1 overexpression reduces doxorubicin sensitivity in small cell lung cancer SBC-3 cells

Yuri Nagaoka, Kotone Oshiro, Yuta Yoshino, Toshiyuki Matsunaga, Satoshi Endo, Akira Ikari

Summary: This study investigated the effect of intercellular adhesion molecule CLDN1 on the anticancer drug sensitivity of small-cell lung cancer (SCLC) cells. It was found that overexpression of CLDN1 decreased the sensitivity of SCLC cells to anticancer drugs and enhanced their migratory capacity through the activation of the TGF-81/EMT signaling pathway. Treatment with EMT inhibitors showed potential in overcoming the reduced sensitivity to anticancer drugs in CLDN1-overexpressing SCLC cells.

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS (2024)