4.6 Review

Allosteric regulation in Acetohydroxyacid Synthases (AHASs) - Different structures and kinetic behavior in isozymes in the same organisms

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 519, 期 2, 页码 167-174

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2011.11.025

关键词

Acetohydroxyacid Synthase; Thiamin diphosphate; Valine regulation; ACT domain; Regulatory subunit; Mutagenesis

向作者/读者索取更多资源

Acetohydroxyacid Synthases (AHASs) have separate small regulatory subunits which specifically activate the catalytic subunits with which they are associated. The binding sites for the inhibitory amino acid(s) (valine or leucine) are in the interface between two ACT (small ligand binding) domains, and are apparently found in all AHAS regulatory subunits. However, the structures and the kinetic mechanisms of the different enzymes are very heterogeneous. Among the three isozymes encoded in the enterobacteria, the regulatory patterns are different, and their different responses to the inhibitory end product valine can be rationalized, at least in part, on the basis of the regulatory subunit structures and differences in catalytic mechanisms. The regulatory subunits in typical single AHASs found in other bacteria are similar to that of Escherichia coli isozyme AHAS III. Eukaryotic AHASs have more complex regulatory mechanisms and larger regulatory subunits. Such AHASs have two separate ACT sequence domains on the same regulatory polypeptide and can simultaneously bind two amino acids with synergistic effects. Yeast and fungal AHASs have ATP-binding sequence inserts in their regulatory subunits and are activated by MgATP in addition to being inhibited by valine. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据