4.7 Article

Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: Morphology and catalytic application

期刊

APPLIED SURFACE SCIENCE
卷 313, 期 -, 页码 360-367

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.05.215

关键词

Mn2O3 nanowrinkles; Mn3O4 nanorods; Electrospinning; Catalysis; Poly-(L-lactide-co-epsilon-caprolactone) (PCLA)

向作者/读者索取更多资源

Mn2O3 nanowrinkles and Mn3O4 nanorods were successfully synthesized via the heat-treatment of poly-(L-lactide-co-epsilon-caprolactone) (PCLA)/manganese acetate composite nanofibers, which were prepared through sal-gel processing and electrospinning technique in advance. From SEM images, it can be observed that the structures of manganese oxides obtained from 300, 400, 700, 1000 degrees C were mountain-like protuberances with thin fibers, nanowrikles and nanorods, successively. The calcination process and the morphology formation mechanism were studied in detail with the help of thermo gravimetric analysis. XRD and FT-IR measurements demonstrated that the product was highly pure cubic bixbyite phase of Mn2O3 and tetragonal hausmannite phase of Mn3O4 at corresponding temperature. The catalytic activities of the as-prepared Mn2O3 nanowrikles and Mn3O4 nanorods were testified by quantifying the degradation of methyl blue dye with H2O2. The results showed that the obtained manganese oxides nanoproducts exhibited higher efficiency than Mn2O3 and Mn3O4 powders. Meanwhile, the catalytic activity of Mn3O4 phase was higher than that of Mn2O3 phase. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据