4.7 Article

Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

期刊

APPLIED SURFACE SCIENCE
卷 317, 期 -, 页码 1052-1059

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.09.042

关键词

Arsenite; Arsenate; Adsorption; Iron nanoparticles; M. spicata L.; Kinetics

向作者/读者索取更多资源

The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), 0 (19%) and Cl (23%). FT-IR study suggested that functional groups like NH, -C=O, C=N and C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据