4.7 Article

Fabrication and surface photovoltage study of hematite microparticles with hollow spindle-shaped structure

期刊

APPLIED SURFACE SCIENCE
卷 258, 期 18, 页码 7099-7104

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2012.04.006

关键词

alpha-Fe2O3 microparticles; Hollow structure; Optical properties; Surface photovoltage

资金

  1. National Nature Science Foundation of China [20877013, NSFC-RGC 21061160495]
  2. National High Technology Research and Development Program of China (863 Program) [2010AA064902]
  3. Major State Basic Research Development Program of China (973 Program) [2011CB936002]
  4. Liaoning Provincial University [LR2010090]
  5. Key Laboratory of Industrial Ecology and Environmental Engineering, China Ministry of Education

向作者/读者索取更多资源

Hematite (alpha-Fe2O3) particles with hollow spindle-shaped microstructure were successfully synthesized by a one-pot hydrothermal approach in large scale. The structural properties of the sample were systematically investigated by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, high resolution transmission electron microscopy, selected-area electron diffraction techniques, UV-vis diffuse reflectance spectroscopy and infrared spectroscopy techniques. The characterization results revealed that the alpha-Fe2O3 microparticles with a single-domain crystalline structure was mainly grown along the (1 0 4) crystal plane. The valence states and the surface chemical compositions of alpha-Fe2O3 were further identified by X-ray photoelectron spectroscopy. The feature of photo-induced charge separation on spectrum was demonstrated by the surface photovoltage measurement under different external biases. The observed photoelectric characteristics of the as-fabricated material are beneficial for various optical and electronic applications. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Adsorption and membrane separation for removal and recovery of volatile organic compounds

Guoqiang Gan, Shiying Fan, Xinyong Li, Zhongshen Zhang, Zhengping Hao

Summary: Volatile organic compounds (VOCs) are significant pollutants in the environment due to their toxicity, volatility, and poor degradability. Controlling their emission is urgent, and efficient technologies for removal and recovery are of great importance. Adsorption and membrane separation processes have been extensively studied and favored for their industrial prospects.

JOURNAL OF ENVIRONMENTAL SCIENCES (2023)

Article Engineering, Chemical

One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature

Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He

Summary: NH3 selective catalytic reduction (SCR) is a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. In this study, bimetallic CeCu-SAPO-34 molecular sieves were synthesized and showed improved catalytic activity at low temperatures. The introduction of cerium species enhanced the catalyst's stability and promoted the NH3-SCR reaction through the formation of weak Bronsted acid centers and the synergy between CuO grains and isolated Cu2+. This work provides a facile synthesis method for high-efficiency SCR denitration catalysts.

CHINESE JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Nanoscience & Nanotechnology

Cubic CuFe2O4 Spinel with Octahedral Fe Active Sites for Electrochemical Dechlorination of 1,2-Dichloroethane

Guoqiang Gan, Fengquan Xu, Xinyong Li, Shiying Fan, Chunpeng Bai, Qidong Zhao, Moses O. Tade, Shaomin Liu, Wenjun Zhang

Summary: The influence of crystal phase on the electrocatalytic performance and active sites of CuFe2O4 spinel for the electrochemical dechlorination of 1,2-dichloroethane is studied. A higher activity and ethylene selectivity are observed for the cubic phase compared to the tetragonal phase, indicating the significant enhancement of electrocatalytic performance by the cubic crystal structure. The octahedral Fe atom on the surface of cubic CuFe2O4(311) is identified as the active site responsible for ethylene production with an energy barrier of 0.40 eV. This work highlights the importance of crystal phase engineering for optimizing electrocatalytic performance and provides an efficient strategy for the development of advanced electrocatalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Energy & Fuels

Pilot-scale trail of a novel integrated process towards promoting polymer-flooding sewage treatment by reducing back-mixed feedstocks

Yushan Li, Xu Liu, Hao Zhou, Qidong Zhao, Yonghou Xiao

Summary: In this study, a novel integrated process for the treatment of polymer-flooding sewage is proposed, which includes air flotation-(anaerobic-anoxic-aerobic)-ozone catalytic oxidation-dual media filtration-multimedia filtration. The process effectively addresses the low pollutant removal efficiency caused by the high viscosity of polymer and achieves efficient removal of suspended solids, oil, and other biochemical indexes. Moreover, more than 70% of the polymer is retained in the effluent. This research provides an efficient approach for the reuse of polymer-flooding sewage.

CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION (2023)

Article Energy & Fuels

Construction of novel super microporous silica adsorbents using pluronic triblock copolymer as template towards desulfurization from fuel

You Zhao, Wenkai Zhao, Yonghou Xiao, Qidong Zhao, Chengbin Li, Xiaoying Dong, Shengnan Lu

Summary: A novel super microporous silica material (SMS) with a bimodal micro-mesoporous pore size distribution has been successfully synthesized. The SMS demonstrates improved adsorption desulfurization performance by reducing diffusion resistance and enhancing shape selectivity compared to traditional microporous and mesoporous silicon oxide materials. The SMS exhibits high desulfurization capacity, easy regeneration, and satisfactory performance for practical applications.
Article Engineering, Chemical

Rational Design of Hierarchical Alloy-Containing Z-Scheme Catalytic Materials toward Effective Conversion of Nitric Oxide Toxic Species under Mild Conditions

Zhiyuan Liu, Shiying Fan, Xinyong Li, Zhaodong Niu, Jing Wang, Chunpeng Bai, Jun Duan, Moses O. Tade, Shaomin Liu

Summary: We demonstrate a composite photocatalyst for nitric oxide conversion with a Cu-Fe alloy, graphitic carbon nitride (g-C3N4), and ZnIn2S4. The superior photocatalytic performance of 6.45-fold that of g-C3N4 was confirmed. The delay effect on charge recombination was observed through time-resolved photoluminescence, and heterojunction establishment was attributed to the hole-trapping ability of ZnIn2S4. The combined effects of the Cu-Fe alloy were confirmed by NO-specific adsorption and conversion experiments, and the active species involved were examined via electron spin resonance. Density functional theory calculations revealed the molecular mechanisms of photocatalytic conversion of NO to NO3-. Therefore, g-C3N4|ZnIn2S4|CuFe has potential for sustainable and efficient pollutant conversion.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Engineering, Chemical

Construction of rational defective CPO-27-Ni using N, N-dimethyloctadecylamine as template towards enhanced adsorptive desulfurization from fuel

Shengnan Lu, Yonghou Xiao, Qidong Zhao, Wenkai Zhao, Gaohong He

Summary: Deep desulfurization of fuel is an important research topic in response to increasing environmental protection requirements. This study proposes a strategy to construct defective CPO-27-Ni with a micro-mesoporous structure using N, N-dimethyloctadecylamine (DMA18) as a template, aiming to improve diffusion efficiency. The introduction of mesopores effectively enhances the adsorption desulfurization performance of CPO-27-Ni, providing valuable insights for preparing high-efficiency desulfurization adsorbents.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Highly crinkled and interconnected N, O and S co-doped carbon nanosheet modified separators for efficient Li-S batteries

Yanan Zhu, Yuanfu Deng, Guohua Chen

Summary: In this study, heteroatom-doped carbon nanosheets were successfully synthesized using crosslinked triazine frameworks and g-C3N4 nanosheets as a template. The nanosheets exhibited high crinkling and interconnectivity, along with a large surface area (1060 m(2) g(-1)) and pore volume (2.14 cm(3) g(-1)), with highly dispersed N, O and S. When coated on commercial Celgard separators, the modified batteries showed low self-discharge and improved rate performance, even at 4 C. Excellent cycling performances were achieved at different rates, with an initial discharge capacity of 1240 mA h g(-1) and a capacity decay of only 0.059% per cycle for over 1000 cycles at 0.5 C.

MATERIALS CHEMISTRY FRONTIERS (2023)

Article Chemistry, Physical

Interfacial engineering of CoMn2O4/NC induced electronic delocalization boosts electrocatalytic nitrogen oxyanions reduction to ammonia

Zhaodong Niu, Shiying Fan, Xinyong Li, Jun Duan, Aicheng Chen

Summary: In this study, a new catalyst was developed for efficient wastewater treatment and high-value ammonia generation. The catalyst exhibited high Faradaic efficiency and yield at specific potentials, and the reaction was promoted by the interface effect. The experimental results and theoretical calculations provided insights into the catalytic mechanism and product formation.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis

Zhiyuan Liu, Shiying Fan, Xinyong Li, Zhaodong Niu, Jing Wang, Chunpeng Bai, Jun Duan, Moses O. Tade, Shaomin Liu

Summary: In this paper, single atom Cu/Ta3N5/CdIn2S4 S-scheme hierarchical polyhedrons (SACu/TN/CIS SHPs) were successfully synthesized and their photocatalytic activity improvement was investigated. The synergistic effect of SACu and S-scheme was confirmed to exhibit excellent charge separation and reduction of energy barriers during ammonium production reaction. The NH3 production rate of SACu/TN/CIS SHPs under light conditions was remarkably 43.6 times higher than that of Ta3N5. This study not only proposes an efficient catalyst under visible light, but also provides an advantageous solution for photocatalytic nitrate reduction.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Review Chemistry, Multidisciplinary

Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide

Cong Lin, Jianyuan Li, Zu-Wei Yin, Weiyuan Huang, Qinghe Zhao, Qingsong Weng, Qiang Liu, Junliang Sun, Guohua Chen, Feng Pan

Summary: This review focuses on the long-term research of the structural understanding of LiCoO2 cathode, uncovering various structural issues and stabilization strategies at different scales. It emphasizes the importance of in-depth knowledge of LiCoO2 structure for future stabilization efforts.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Modulating the Molecular Structure of Graphitic Carbon Nitride for Identifying the Impact of the Piezoelectric Effect on Photocatalytic H2O2 Production

Penglei Wang, Shiying Fan, Xinyong Li, Jun Duan, Dongke Zhang

Summary: The impact of the piezoelectric effect on the photocatalytic production of hydrogen peroxide (H2O2) over graphitic carbon nitride (CN) was investigated by modulating its molecular structure. The results showed that the photocatalytic activity of CN, CN-P, CN-OF was enhanced by approximately 1.40, 1.46, and 1.51 times due to the piezoelectric effect, respectively, while CN-CA exhibited a 6-fold decrease in activity. Various techniques were employed to explore the active sites, piezoelectric polarization, and charge separation, revealing that the piezoelectric effect's influence on photocatalytic H2O2 production over CN is determined by multiple factors.

ACS CATALYSIS (2023)

Article Nanoscience & Nanotechnology

Effect of Cu-Doped Co-Mn Spinel for Boosting Low-Temperature NO Reduction by CO: Exploring the Structural Properties, Performance, and Mechanisms

Yu Qin, Shiying Fan, Jinsuo Gao, Moses O. Tade, Shaomin Liu, Xinyong Li

Summary: Cu-doped CoMn2O4 catalysts showed excellent catalytic performance in NO reduction by CO, with Cu0.3Co0.7Mn2O4 achieving 100% NO conversion and 80% N2 selectivity at 250 degrees C. Structural analysis revealed that the introduced Cu replaces some Co in tetrahedral coordination, resulting in a strong synergistic effect between different metals.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Environmental Sciences

High Capacitive Removal of Pb2+ from Wastewater and Mechanism Study over MoO2@N-Doped Hollow Carbon Sphere Anodes

Jinyun Luo, Jincheng Mu, Xinyong Li, Baojun Liu

Summary: With the development of metallurgy, chemical manufacturing, and mining, lead pollution in water, especially from battery industries, has become a serious environmental problem. In this study, a highly efficient removal of Pb2+ from wastewater was achieved using MoO2@N-doped hollow carbon sphere (MoO2@ NHCS) anodes in a capacitive deionization (CDI) process. The MoO2@NHCS electrodes exhibited a high adsorption capacity of 202.14 mg/g for Pb2+ in a 50 ppm solution (pH = 6 and U = 1.2 V). Additionally, the electrodes showed selectivity towards Pb2+ even in the presence of Na+ and other heavy metal ions. The selective removal was attributed to the transformation of octahedral MoO2 into tetrahedral [MoO4]2-, which could effectively trap Pb2+ to form PbMoO4.

ACS ES&T WATER (2023)

Article Chemistry, Physical

Multifunctional continuous solid solution Na0.9Mg0.45Ti3.55O8-Na2Fe2Ti6O16: Preparation, characterization, magnetism, dual absorption, adsorption, and photocatalysis

Qi-Wen Chen, Ze-Qing Guo, Jian-Ping Zhou

Summary: Multifunctional continuous solid solutions NFMTO-x were successfully synthesized via a one-step hydrothermal method by controlling the ratio of Mg and Fe. The NFMTO-x materials exhibited enhanced visible light response, effective adsorption and photocatalytic degradation of organic pollutants, CO2 methanation capability, and easy recyclability due to their magnetic properties. This research provides a significant multifunctional material for water purification.

APPLIED SURFACE SCIENCE (2024)

Review Chemistry, Physical

Critical advances in the field of magnetron sputtered bioactive glass thin-films: An analytical review

George E. Stan, Maziar Montazerian, Adam Shearer, Bryan W. Stuart, Francesco Baino, John C. Mauro, Jose M. F. Ferreira

Summary: Bioactive glasses have the ability to form strong bonds with tissues and release therapeutic ions. However, their biomechanical compatibility limits their use in load-bearing applications. The use of magnetron sputtering technology to fabricate BG coatings shows promise in improving their efficacy and potential for application.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Corrosion mode evaluation of Fe-based glassy alloys with metalloid elements by electrochemical noise (EN)

Zhaoxuan Wang, Zhicheng Yan, Zhigang Qi, Yu Feng, Qi Chen, Ziqi Song, Meng Huang, Peng Jia, Ki Buem Kim, Weimin Wang

Summary: The corrosion behavior of Fe-60 and Fe-83 ribbons in 0.6 M NaCl was studied. Fe-60 exhibited a local corrosion mode and formed a stable passivation film with higher corrosion resistance, while Fe-83 showed a combination of local and global corrosion modes and had lower corrosion resistance. Controlling the precipitation of nanocrystalline phases and increasing the POx content in the passivation film significantly improved the corrosion resistance of Fe-based glassy alloys.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Impacts of Zr content of HfZrOx-Based FeFET memory on resilience towards proton radiation

Hao-Kai Peng, Sheng-Yen Zheng, Wei-Ning Kao, Ting-Chieh Lai, Kai-Sheun Lee, Yung- Hsien Wu

Summary: This study investigates the effects of high energy/fluence proton radiation on the performance of HfZrOx-based FeFETs memory with different Zr content. The results show that the characteristics of FeFETs are influenced by proton radiation, and the extent of the influence depends on the Zr content. FeFETs with 50% Zr content exhibit minimal changes in memory window and demonstrate good endurance and retention performance.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack

Zongyi Yue, Guangyi Wang, Zengguang Huang, Sihua Zhong

Summary: In this study, AZO and ITO films were successfully tuned as excellent passivation layers for c-Si surfaces, achieving effective minority carrier lifetime and outstanding optical properties through the optimization of annealing temperature and interfacial silicon oxide.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hydrogen sensing capabilities of highly nanoporous black gold films

Martin Hruska, Jan Kejzlar, Jaroslav Otta, Premysl Fitl, Michal Novotny, Jakub Cizek, Oksana Melikhova, Matej Micusik, Peter Machata, Martin Vrnata

Summary: This paper presents a detailed study on the hydrogen sensing capabilities of highly nanoporous black gold films. The films exhibit fast response and recovery times at low temperatures. Different levels of nanoporosity were prepared and tested to investigate the sensing properties, and it was found that nanoporous black gold is suitable for hydrogen sensing. The sensitivity of the film depends on its nanoporosity.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Abnormal stability of hydrogenic defects and magnetism near the HSrCoO2.5(001) surface

Yupu Wang, Gaofeng Teng, Chun To Yiu, Junyi Zhu

Summary: In the study of BM-SCO and HSCO thin films, it was found that H vacancies tend to prefer sites near the external surface or oxygen vacancy channels (OVCs), while H interstitials prefer sites of oxygen on a layer that contains six-fold coordinated Co. These findings not only enrich the understanding of complex surface phenomena of defect formation but also provide an explanation for the reversibility during phase transformation.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Space variant fiber nanogratings induced by femtosecond laser direct writing

Jiafeng Lu, Linping Teng, Qinxiao Zhai, Chunhua Wang, Matthieu Lancry, Ye Dai, Xianglong Zeng

Summary: In this study, we achieved full control of fiber nanograting orientation by manipulating laser polarization, and tailored space variant fiber nanogratings, which expanded the diversity in fiber nanograting engineering.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Wetting mechanisms in the mass transfer process of CuSi3 droplets on the TC4 and 304SS multi-metal system controlled by the hybrid shielding gas atmosphere

Yibo Liu, Yujie Tao, Yue Liu, Qi Sun, Qinrong Lin, Kexin Kang, Qinghua Zhang, Qingjie Sun

Summary: This study investigates the wettability of the Ti-Cu-Fe multi-metal system, specifically the wetting behaviors of CuSi3 droplets on TC4 and 304SS plates. The results show that the CO2 + Ar gas atmosphere significantly affects interfacial mass transfer, thus influencing the wettability of the systems.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Size-regulated Co-doped hetero-interfaced 3D honeycomb MXene as high performance electromagnetic absorber with anti-corrosion performance

Jimei Liu, Fei Wang, Rong Guo, Yuqi Liu, Mengyu Zhang, Jaka Sunarso, Dong Liu

Summary: This study developed Co/MXene composites with anti-corrosion properties by varying the cobalt content. These composites exhibited remarkable electromagnetic absorption performance and high resistance to corrosion under various corrosive conditions. The study also revealed the mechanism of electron transfer from cobalt to MXene and the electromagnetic dissipation behavior originated from polarization loss alone.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Ultrafine Ru nanoparticles on nitrogen-doped CNT arrays for HER: A CVD-based protocol achieving microstructure design and strong catalyst-support interaction

Moujie Huang, Yongsong Ma, Jingbo Yang, Lingyun Xu, Hangqi Yang, Miao Wang, Xin Ma, Xin Xia, Junhao Yang, Deli Wang, Chuang Peng

Summary: Strong metal-support interactions (SMSIs) are important for enhancing catalytic activities and stability in thermal catalysis. This study demonstrates a method to create SMSIs in electrocatalysis using carbon nanotubes and Ru nanoparticles, resulting in excellent catalytic activity and stability.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Novel biphenylene as cisplatin anticancer drug delivery carrier; insight from theoretical perspective

Ravi Trivedi, Brinti Mondal, Nandini Garg, Brahmananda Chakraborty

Summary: This study explores the potential of biphenylene as a nanocarrier for the delivery of the anticancer drug cisplatin. It is found that biphenylene offers physical stability, rapid release rate, solubility, and bio-compatibilities compared to other nanocarriers. The adsorption of cisplatin on the surface of biphenylene involves charge transfer from cisplatin to biphenylene. The drug is shown to be released at body temperature in an acidic environment. Biphenylene also exhibits excellent cytotoxicity activity and cellular uptake of the drug. Overall, biphenylene shows promise as a potential nanocarrier for cisplatin delivery.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Platform for surface-enhanced Raman scattering in layered quantum materials

Hyun Jeong, Hyeong Chan Suh, Ga Hyun Cho, Rafael Salas-Montiel, Hayoung Ko, Ki Kang Kim, Mun Seok Jeong

Summary: In this study, a potential platform to enhance Raman scattering and increase the number of observable Raman modes in monolayer transition metal dichalcogenides (TMDs) was proposed. The platform consisted of large-scale arrays of gold micropillars (MPs), which were able to enhance the Raman intensity of TMDs and make difficult-to-detect Raman modes observable. The platform showed great industrial advantages and wide applicability due to its low cost, simple process, large controllable area, and short process time.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Cyclotriphosphazene (P3N3) derived FeOx@SPNO-C core-shell nanospheres as peroxymonosulfate activator for degradation via non-radical pathway

Yasir Abbas, Shafqat Ali, Sajjad Ali, Waqar Azeem, Zareen Zuhra, Haoliang Wang, Mohamed Bououdina, Zhenzhong Sun

Summary: In this study, FeOx@SPNO-C core-shell nanospheres as a catalyst for degradation of sulfamethoxazole (SMX) were successfully synthesized. The synergistic interaction between FeOx and SPNO-C, high carbon charge density, and the presence of C = O groups and N/Fe-Nx sites were found to be key factors for the enhanced degradation of SMX.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hierarchical confinement of Prussian blue nanoparticles via NH2-MIL-88B (Fe): Rational design and electrocatalytic application

Qiaoting Yang, Yuxiao Gong, Yan Qian, Zhou-Qing Xiao, Serge Cosnier, Xue-Ji Zhang, Robert S. Marks, Dan Shan

Summary: This study proposes a hierarchical confinement strategy to design Prussian blue nanoparticles (PB NPs) with satisfactory electrocatalytic ability and stability. The catalytic synthesis of PB NPs is achieved through a hydrothermal process, and the as-prepared PB@NH2MIL exhibits efficient electronic transmission and enhanced electrocatalytic properties.

APPLIED SURFACE SCIENCE (2024)