4.6 Article

Optical Interference Effects in the Design of Substrates for Surface-Enhanced Raman Spectroscopy

期刊

APPLIED SPECTROSCOPY
卷 63, 期 2, 页码 133-140

出版社

SAGE PUBLICATIONS INC
DOI: 10.1366/000370209787392102

关键词

Raman spectroscopy; Surface-enhanced Raman spectroscopy; SERS; Silver island films; Interference

资金

  1. NSERC
  2. National Institute for Nanotechnology
  3. University of Alberta
  4. Government of Canada
  5. Government of Alberta

向作者/读者索取更多资源

This paper presents results showing that the design of substrates used for surface-enhanced Raman spectroscopy (SERS) can impact the apparent enhancement factors (EFs) obtained due to optical interference effects that are distinct from SERS, providing additional enhancement of the Raman intensity. Thus, a combination of SERS and a substrate designed to maximize interference-based enhancement is demonstrated to give additional Raman intensity above that observed for SERS alone. The system explored is 4-nitroazobenzene (NAB) and biphenyl (BP) chemisorbed on a nanostructured silver film obtained by vacuum deposition of Ag on thermally oxidized silicon wafers. The enhancing silver layer is partially transparent, enabling a standing wave to form as a result of the combination of the incident light and light reflected from the underlying Si substrate (i.e., light that passes through the Ag and the intervening dielectric layer of SiOx). The Raman intensity is measured as a function of the thickness of the thermal oxide layer in the range from similar to 150 to similar to 400 nm, and despite a lack of morphological variation in the silver films, there is a strong dependence of the Raman intensity on the oxide thickness. The Raman signal for the optimal SiOx interlayer thickness is 38 times higher than the intensity obtained when the Ag particles are deposited directly onto Si (with native oxide). To account for the trends observed in the Raman intensity versus thickness data, calculations of the relative mean square electric field (MSEF) at the surface of the SiOx are carried out. These calculations are also used to further optimize the experimental setup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据