4.6 Article

Electronic structure evolution in doping of fullerene (C60) by molybdenum trioxide

期刊

APPLIED PHYSICS LETTERS
卷 105, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4895784

关键词

-

资金

  1. National Science Foundation [DMR-1303742, NSF CBET-1437656]

向作者/读者索取更多资源

Molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and the highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the Fermi level position in fullerene is modified by molybdenum oxide doping, and the HOMO onset is shifted to less than 0.3 eV below the Fermi level. The energy level shift is found to saturate at doping ratio of 18%. Till this stage, the shift depends on the doping concentration in a semi-logarithmic scale, with a slope substantially higher than that of the traditional semiconductor theory. The XPS results indicate that charge transfer continues beyond the energy level shift saturation till the doping ratio reaches 66% as evidenced by the Mo5+ component, At higher doping concentration, there is more Mo6+ component, which indicates the saturation of the charge transfer between MoOx and C-60. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据