4.6 Article

Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors

期刊

APPLIED PHYSICS LETTERS
卷 99, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3644157

关键词

aluminium alloys; cobalt alloys; electrical resistivity; Hall effect; Hall effect devices; magnetic thin films; manganese alloys; metallic thin films; sputter deposition; thin film sensors

资金

  1. DFG [FOR559/Ja821/2-3, ASPI-MATT/Ja821/5-1]

向作者/读者索取更多资源

Sets of Heusler compound Co2MnAl thin films were grown on MgO (100) and Si (100) substrates by radio frequency magnetron sputtering. Composition, magnetic, and transport properties were studied systematically for samples deposited at different conditions. In particular, the anomalous Hall effect resistivity presents an extraordinarily temperature independent behavior in a moderate magnetic field range from 0 to 0.6 T. We analyzed the off-diagonal transport at temperatures up to 300 degrees C. Our data show the suitability of the material for Hall sensors working well above room temperature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3644157]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Significant enhancement of ferromagnetism above room temperature in epitaxial 2D van der Waals ferromagnet Fe5-δGeTe2/Bi2Te3 heterostructures

E. Georgopoulou-Kotsaki, P. Pappas, A. Lintzeris, P. Tsipas, S. Fragkos, A. Markou, C. Felser, E. Longo, M. Fanciulli, R. Mantovan, F. Mahfouzi, N. Kioussis, A. Dimoulas

Summary: The 2D van der Waals ferromagnetic metals FexGeTe2 with x = 3-5 have attracted significant attention. In this study, epitaxial Fe5-dGeTe2 (FGT) heterostructures were grown on insulating crystalline substrates using Molecular Beam Epitaxy (MBE). The addition of Bi2Te3 topological insulator (TI) to FGT films significantly enhanced the saturation magnetization and Curie temperature (Tc), with record values of 570 K obtained.

NANOSCALE (2023)

Article Physics, Multidisciplinary

Tunable topologically driven Fermi arc van Hove singularities

Daniel S. S. Sanchez, Tyler A. A. Cochran, Ilya Belopolski, Zi-Jia Cheng, Xian P. Yang, Yiyuan Liu, Tao Hou, Xitong Xu, Kaustuv Manna, Chandra Shekhar, Jia-Xin Yin, Horst Borrmann, Alla Chikina, Jonathan D. D. Denlinger, Vladimir N. N. Strocov, Weiwei Xie, Claudia Felser, Shuang Jia, Guoqing Chang, M. Zahid Hasan

Summary: The classification of electronic phases is based on two prominent paradigms: correlations and topology. Electron correlations lead to superconductivity and charge density waves, while the Berry phase gives rise to electronic topology. The combination of these two paradigms has prompted the search for electronic instabilities near the Fermi level of topological materials. This study identifies the electronic topology of chiral fermions as the driving force behind van Hove singularities that host electronic instabilities in the surface band structure.

NATURE PHYSICS (2023)

Article Physics, Multidisciplinary

Observation of an anomalous Hall effect in single-crystal Mn3Pt

Belen E. Zuniga-Cespedes, Kaustuv Manna, Hilary M. L. Noad, Po-Ya Yang, Michael Nicklas, Claudia Felser, Andrew P. Mackenzie, Clifford W. Hicks

Summary: By applying a combination of uniaxial stress and magnetic field, we have observed a significant anomalous Hall effect in a bulk sample of a cubic member of the Mn3X family for the first time. The observed effect remains unchanged when the stress is removed, indicating that it is not induced by stress-induced ferromagnetic moments.

NEW JOURNAL OF PHYSICS (2023)

Article Physics, Multidisciplinary

Visualizing Higher-Fold Topology in Chiral Crystals

Tyler A. Cochran, Ilya Belopolski, Kaustuv Manna, Mohammad Yahyavi, Liu Yiyuan, Daniel S. Sanchez, Cheng Zi-Jia, Xian P. Yang, Daniel Multer, Yin Jia-Xin, Horst Borrmann, Alla Chikina, Jonas A. Krieger, Jaime Sanchez-Barriga, Patrick Le Fevre, Francois Bertran, Vladimir N. Strocov, Jonathan D. Denlinger, Chang Tay-Rong, Jia Shuang, Claudia Felser, Hsin Lin, Chang Guoqing, M. Zahid Hasan

Summary: In this Letter, the authors discovered the higher-fold topology of a chiral crystal using a combination of fine-tuned chemical engineering and photoemission spectroscopy. They identified all bulk branches of a higher-fold chiral fermion and revealed a multigap bulk boundary correspondence. This demonstration of multigap electronic topology will drive future research on unconventional topological responses.

PHYSICAL REVIEW LETTERS (2023)

Article Multidisciplinary Sciences

Reply to: Low-frequency quantum oscillations in LaRhIn5: Dirac point or nodal line?

Chunyu Guo, A. Alexandradinata, Carsten Putzke, Amelia Estry, Teng Tu, Nitesh Kumar, Feng-Ren Fan, Shengnan Zhang, Quansheng Wu, Oleg V. Yazyev, Kent R. Shirer, Maja D. Bachmann, Hailin Peng, Eric D. Bauer, Filip Ronning, Yan Sun, Chandra Shekhar, Claudia Felser, Philip J. W. Moll

NATURE COMMUNICATIONS (2023)

Correction Multidisciplinary Sciences

Observation of a robust and active catalyst for hydrogen evolution under high current densities (vol 13, 7784, 2022 )

Yudi Zhang, Kathryn E. Arpino, Qun Yang, Naoki Kikugawa, Dmitry A. Sokolov, Clifford W. Hicks, Jian Liu, Claudia Felser, Guowei Li

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Anomalous Hall Conductivity and Nernst Effect of the Ideal Weyl Semimetallic Ferromagnet EuCd2As2

Subhajit Roychowdhury, Mengyu Yao, Kartik Samanta, Seokjin Bae, Dong Chen, Sailong Ju, Arjun Raghavan, Nitesh Kumar, Procopios Constantinou, Satya N. Guin, Nicholas Clark Plumb, Marisa Romanelli, Horst Borrmann, Maia G. Vergniory, Vladimir N. Strocov, Vidya Madhavan, Chandra Shekhar, Claudia Felser

Summary: In this study, the electronic structure of ferromagnetic EuCd2As2, predicted to be an ideal Weyl semimetal, is investigated using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. The experimental results are in close agreement with the first principles calculations. Furthermore, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings provide insights into exotic quantum phenomena in inorganic topological materials with multiple pairs of Weyl nodes.

ADVANCED SCIENCE (2023)

Article Materials Science, Multidisciplinary

Realization of chiral multifold semimetal RhSi crystalline thin films

Hua Lv, Edouard Lesne, Rebeca Ibarra, Yan Sun, Anastasios Markou, Claudia Felser

Summary: In this study, the structural, magnetic, and electrical magnetotransport properties of 24 and 51 nm thick B20-RhSi thin films grown by magnetron sputtering were investigated. The films exhibited a nonmagnetic ground state and metallic behavior. It was confirmed that the temperature-dependent electrical resistivity is governed by electron-phonon scattering. The ability to grow textured-epitaxial thin films of nonmagnetic B20 chiral topological semimetals is an important step toward designing chiraltronic devices with novel functionalities.

PHYSICAL REVIEW MATERIALS (2023)

Article Engineering, Electrical & Electronic

THz Generation from the Topological Nodal Line Semimetal Co2MnGa

Luca Tomarchio, Sen Mou, Lorenzo Mosesso, Anastasios Markou, Edouard Lesne, Claudia Felser, Stefano Lupi

Summary: In this paper, we investigate the terahertz emission from thin films of the magnetic topological nodal semimetal Co2MnGa when excited by femtosecond optical pulses. We identify multiple THz generation mechanisms, including a photon-drag effect induced by radiation pressure and a photovoltaic effect from the topological surface states of CMG. This interplay between generation mechanisms highlights the potential of Co2MnGa topological nodal semimetals for THz emitter devices.

ACS APPLIED ELECTRONIC MATERIALS (2023)

Article Physics, Multidisciplinary

High Resolution Polar Kerr Effect Studies of CsV3Sb5: Tests for Time-Reversal Symmetry Breaking below the Charge-Order Transition

David R. Saykin, Camron Farhang, Erik D. Kountz, Dong Chen, Brenden R. Ortiz, Chandra Shekhar, Claudia Felser, Stephen D. Wilson, Ronny Thomale, Jing Xia, Aharon Kapitulnik

Summary: This study reports high-resolution polar Kerr effect measurements on CsV3Sb5 single crystals to search for evidence of spontaneous time-reversal symmetry breaking below the charge-order transition. Utilizing two different versions of zero-area loop Sagnac interferometers operating at 1550 nm wavelength, the researchers found no observable Kerr effect within the noise floor limit. Simultaneous coherent reflection ratio measurements confirmed the sharpness of the charge-order transition, suggesting that time-reversal symmetry is unlikely to be broken in the charge ordered state in CsV3Sb5.

PHYSICAL REVIEW LETTERS (2023)

Review Nanoscience & Nanotechnology

Charge transport and hydrodynamics in materials

Georgios Varnavides, Amir Yacoby, Claudia Felser, Prineha Narang

Summary: As high-quality single-crystal materials used in electronic devices reach smaller scales, charge-transport phenomena lead to inhomogeneous spatial signatures with significant effects on material properties. These signatures, including spatially varying dissipation and interface resistance, are crucial for device control. This Review examines the inhomogeneous charge flow signatures in conductors, focusing on electron hydrodynamics, where electrons exhibit strong interactions and flow collectively like fluids. Recent experimental advances and theoretical frameworks are discussed, along with new charge-transport phenomena introduced by crystal symmetry in materials.

NATURE REVIEWS MATERIALS (2023)

Article Materials Science, Multidisciplinary

Band structures of (NbSe4)3I and (TaSe4)3I: Reconciling transport, optics, and angle-resolved photoemission spectroscopy

Irian Sanchez-Ramirez, Maia G. Vergniory, Claudia Felser, Fernando de Juan

Summary: Among the quasi-one-dimensional transition metal tetrachalcogenides (MSe4)nI (M = Nb,Ta), the n = 3 compounds exhibit structural transitions with puzzling transport behavior instead of charge density waves. Recent discovery of a metallic polytype of (TaSe4)3I with coexisting ferromagnetism and superconductivity at low temperature challenges previous reports. In this study, ab initio and tight-binding band-structure calculations are used to explain the observed transport gaps and clarify the controversy regarding ARPES and optical conductivity experiments. The effect of small extrinsic hole doping and its implications for magnetism and superconductivity are also discussed.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Hierarchy of quasisymmetries and degeneracies in the CoSi family of chiral crystal materials

Lun-Hui Hu, Chunyu Guo, Yan Sun, Claudia Felser, Luis Elcoro, Philip J. W. Moll, Chao-Xing Liu, Andrei Bernevig

Summary: In this study, a hierarchical structure of quasisymmetries and their corresponding nodal structures in the chiral crystal material CoSi are revealed through two different approaches of perturbation expansions. Quasisymmetries are found to play a crucial role in the physical responses of the system and can protect the existence of nodal planes.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Doping as a tuning mechanism for magnetothermoelectric effects to improve zT in polycrystalline NbP

Eleanor F. Scott, Katherine A. Schlaak, Poulomi Chakraborty, Chenguang Fu, Satya N. Guin, Safa Khodabakhsh, Ashley E. Paz Y. Puente, Claudia Felser, Brian Skinner, Sarah J. Watzman

Summary: In this study, it was discovered that polycrystalline NbP exhibits a large Nernst effect and a large magneto-Seebeck effect simultaneously, which is rarely observed in a single material at the same temperature. Through doping, the temperature dependence of these magnetothermoelectric effects can be altered, providing a potential tuning mechanism for device applications.

PHYSICAL REVIEW B (2023)

Article Engineering, Electrical & Electronic

Materials Informatics for the Development and Discovery of Future Magnetic Materials

Ryotaro Okabe, Mingda Li, Yuma Iwasaki, Nicolas Regnault, Claudia Felser, Masafumi Shirai, Alexander Kovacs, Thomas Schrefl, Atsufumi Hirohata

Summary: This letter summarizes the recent development of using artificial intelligence and machine learning in the search for magnetic materials, and briefly introduces the approaches used in materials discovery. The authors also provide a flowchart to assist in selecting the appropriate methods for material search. The letter also covers the authors' recent research activities in magnetism and quantum materials.

IEEE MAGNETICS LETTERS (2023)

暂无数据