4.6 Article

Dominant factors limiting efficiency of optical spin detection in ZnO-based materials

期刊

APPLIED PHYSICS LETTERS
卷 92, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2885732

关键词

-

向作者/读者索取更多资源

Two dominant factors limiting efficiency of optical spin detection in ZnO-based materials system are identified from time-resolved optical orientation and magneto-optical studies. The first is related to the fundamental band structure of the materials characterized by a weak spin-orbit interaction. It leads to cancellation of circular polarization from the optical transitions between the conduction band and the A and B valence band states, which would otherwise carry the desired information on spin polarization of carriers. The second limiting factor is shown to be efficient carrier/exciton spin relaxation, i.e., about 45-80 ps. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Lattice Dynamics and Electron-Phonon Coupling in Double Perovskite Cs2NaFeCl6

Bin Zhang, Johan Klarbring, Fuxiang Ji, Sergei Simak, Igor A. Abrikosov, Feng Gao, Galyna Yu Rudko, Weimin M. Chen, Irina A. Buyanova

Summary: Phonon-phonon and electron/exciton-phonon coupling are found to play a vital role in the thermal, electronic, and optical properties of metal halide perovskites. Our study focuses on the evaluation of phonon anharmonicity and coupling between electronic and vibrational excitations in the novel material, Cs2NaFeCl6, through Raman measurements and theoretical calculations. The results highlight the significance of phonon-phonon and electron-phonon interactions in the electronic properties of Cs2NaFeCl6.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Materials Science, Coatings & Films

Deposition of sputtered NiO as a p-type layer for heterojunction diodes with Ga2O3

Jian-Sian Li, Xinyi Xia, Chao-Ching Chiang, David C. C. Hays, Brent P. P. Gila, Valentin Craciun, Fan Ren, S. J. Pearton

Summary: The characteristics of sputtered NiO for pn heterojunctions with Ga2O3 were investigated, and it was found that the oxygen/nickel and Ni2O3/NiO ratios, as well as the bandgap and resistivity, increased with the O-2/Ar gas flow ratio. However, the bandgap and Ni2O3/NiO ratio decreased with increasing annealing temperature, resulting in higher film density. The incorporation of hydrogen into NiO during plasma exposure was confirmed, and the band alignments of NiO films with both alpha- and beta-Ga2O3 were determined to have type II-staggered gaps. The breakdown voltage of NiO/beta-Ga2O3 heterojunction rectifiers also varied with the O-2/Ar flow ratio during deposition.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Article Materials Science, Coatings & Films

Deep UV AlGaN LED reliability for long duration space missions

Benjamin C. Letson, Simon Barke, Peter Wass, Guido Mueller, Fan Ren, Stephen J. Pearton, John W. Conklin

Summary: The laser interferometer space antenna (LISA), a joint ESA and NASA project, will enable space-based gravitational wave detection. Three identical spacecraft will form a triangular configuration, flying in a drag-free formation around free-falling test masses. To compensate for test mass charging, UV photons with higher energy than gold's work function are needed. The performance of UV light emitting diodes (LEDs) for the LISA mission was characterized under various operating conditions, and degradation was found to be faster at elevated temperatures and in dc conditions. Preselection based on initial spectral ratio and ideality factor showed positive correlation with subsequent reliability. The UV LEDs for LISA are required to support a 2-year cruise and commissioning period, followed by a 4-year science mission.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Review Materials Science, Multidisciplinary

Review-Reliability and Degradation Mechanisms of Deep UV AlGaN LEDs

Benjamin C. Letson, John W. Conklin, Peter Wass, Simon Barke, Guido Mueller, Md Abu Jafar Rasel, Aman Haque, Stephen J. Pearton, Fan Ren

Summary: There are various applications for deep UV AlGaN Light-Emitting Diodes (LEDs), including virus inactivation, air and water purification, sterilization, bioagent detection, and UV polymer curing. The long-term stability of these LEDs is important for space missions such as the Laser Interferometer Space Antenna (LISA). The literature review shows that the decline in output power of these LEDs over extended operating times is mainly driven by current and temperature, with the degradation rate dependent on the cube of drive current density and exponentially on temperature. The main mechanism for this decline is believed to be the creation/migration of point defects. Pre-screening based on the ratio of band edge-to-midgap emission and LED ideality factor can identify devices with long lifetimes (>10,000 h).

ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY (2023)

Article Physics, Applied

Tuneable Nonlinear Spin Response in a Nonmagnetic Semiconductor

Y. Q. Huang, V Polojarvi, A. Aho, R. Isoaho, T. Hakkarainen, M. Guina, I. A. Buyanova, W. M. Chen

Summary: This study demonstrates the existence of nonlinear spin response in nonmagnetic materials and showcases it in a (Ga, N)As-InAs quantum dot coupled all-semiconductor nanostructure. The observed spin nonlinearity can be conveniently tuned with an external magnetic field and potentially operates at a speed exceeding 1 GHz.

PHYSICAL REVIEW APPLIED (2023)

Article Crystallography

Reproducible NiO/Ga2O3 Vertical Rectifiers with Breakdown Voltage > 8 kV

Jian-Sian Li, Hsiao-Hsuan Wan, Chao-Ching Chiang, Xinyi Xia, Timothy Jinsoo Yoo, Honggyu Kim, Fan Ren, Stephen J. Pearton

Summary: Vertical heterojunction rectifiers with p-type NiO and thick Ga2O3 drift layers grown on Sn-doped β-Ga2O3 substrates exhibited breakdown voltages > 8 kV. Low drift doping concentration, low power during NiO deposition, and the formation of a guard ring were key factors for achieving excellent performance. These results demonstrate the potential of NiO/Ga2O3 rectifiers beyond SiC and GaN.

CRYSTALS (2023)

Article Materials Science, Multidisciplinary

Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6

Fuxiang Ji, Johan Klarbring, Bin Zhang, Feng Wang, Linqin Wang, Xiaohe Miao, Weihua Ning, Muyi Zhang, Xinyi Cai, Babak Bakhit, Martin Magnuson, Xiaoming Ren, Licheng Sun, Mats Fahlman, Irina A. Buyanova, Weimin M. Chen, Sergei I. Simak, Igor A. Abrikosov, Feng Gao

Summary: Lead-free halide double perovskites (HDPs) have been synthesized with remarkable and fully reversible thermochromism. The thermochromism in Cs2NaFeCl6 is attributed to electron-phonon coupling, and it exhibits higher temperature sensitivity compared to lead halide perovskites and conventional semiconductors. The Cs2NaFeCl6 single crystal shows excellent environmental, thermal, and thermochromic cycle stability. This study provides valuable insights and new possibilities for developing efficient thermochromic materials.

ADVANCED OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Comparison of 10 MeV Neutron Irradiation Effects on NiO/Ga2O3 Heterojunction Rectifiers and Ni/Au/Ga2O3 Schottky Rectifiers

Jian-Sian Li, Xinyi Xia, Chao-Ching Chiang, Hsiao-Hsuan Wan, Fan Ren, Jihyun Kim, S. J. Pearton

Summary: Neutrons generated by charge-exchange reactions were used to irradiate Schottky Ga2O3 rectifiers and NiO/Ga2O3 p-n heterojunction rectifiers. The breakdown voltage was improved for Schottky rectifiers but highly degraded for their NiO/Ga2O3 counterparts. The switching characteristics were degraded for both types of devices after irradiation.

ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

1 mm(2), 3.6 kV, 4.8 A NiO/Ga2O3 Heterojunction Rectifiers

Jian-Sian Li, Chao-Ching Chiang, Xinyi Xia, Hsiao-Hsuan Wan, Fan Ren, S. J. Pearton

Summary: Large area vertical NiO/β n-Ga2O/n(+) Ga2O3 heterojunction rectifiers with high breakdown voltage (3.6 kV) and large conducting currents (4.8 A) are demonstrated. The performance exceeds the unipolar 1D limit for GaN, indicating the potential of β-Ga2O3 for future high-power rectification devices. The breakdown voltage is strongly dependent on the carrier concentration in the drift region.

ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Photoactivated Second Harmonic Generation in Centrosymmetric Double Perovskites

Bin Zhang, Yuqing Huang, Fuxiang Ji, Xiaohe Miao, Feng Gao, Weimin M. Chen, Irina A. Buyanova

Summary: We report the first observation of second harmonic generation (SHG) from halide double perovskite single crystals. The SHG efficiency of these materials with centrosymmetric crystalline structures is strongly dependent on the measurement temperature, increasing by up to 3 orders of magnitude at low temperatures under light illumination. The enhancement is attributed to the build-up of a light-induced electric field within the near-surface region.

ACS PHOTONICS (2023)

Article Crystallography

Annealing Stability of NiO/Ga2O3 Vertical Heterojunction Rectifiers

Jian-Sian Li, Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Stephen J. Pearton

Summary: The stability of vertical geometry NiO/Ga2O3 rectifiers was examined under two types of annealing. It was found that annealing at 300 degrees C resulted in the best performance, including maximizing breakdown voltage and on-off ratio, lowering forward turn-on voltage, reducing reverse leakage current, and maintaining on resistance. The surface morphology remained smooth and the NiO exhibited a bandgap of 3.84 eV with an almost unity Ni2O3/NiO composition.

CRYSTALS (2023)

Article Materials Science, Multidisciplinary

Superior high temperature performance of 8 kV NiO/Ga2O3 vertical heterojunction rectifiers

Jian-Sian Li, Chao-Ching Chiang, Xinyi Xia, Hsiao-Hsuan Wan, Fan Ren, S. J. Pearton

Summary: NiO/β-Ga2O3 vertical rectifiers show near-temperature-independent breakdown voltages (V-B) of >8 kV at 600 K. The power figure of merit (V-B)²/R-ON for 100 μm diameter devices is 9.1 GW cm(-2) at 300 K and 3.9 GW cm(-2) at 600 K. In contrast, Schottky rectifiers on the same wafers have V-B of about 1100 V at 300 K with a negative temperature coefficient of breakdown. The power figure of merit for Schottky rectifiers is much lower compared to the heterojunction rectifiers. The results demonstrate the potential of using transparent oxide heterojunctions for high temperature, high voltage applications.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Review Engineering, Electrical & Electronic

Radiation damage in GaN/AlGaN and SiC electronic and photonic devices

S. J. Pearton, Xinyi Xia, Fan Ren, Md Abu Jafar Rasel, Sergei Stepanoff, Nahid Al-Mamun, Aman Haque, Douglas E. Wolfe

Summary: Wide bandgap semiconductors SiC and GaN are used in power electronics and light-emitting diodes. They have higher radiation hardness compared to Si devices due to larger threshold energies for creating defects and high rates of defect recombination. However, heavy-ion-induced catastrophic burnout commonly occurs in SiC and GaN power devices. Light-emitting devices are not affected by this mechanism. Strain has also been identified as a parameter affecting radiation susceptibility of wide bandgap devices.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B (2023)

Article Engineering, Electrical & Electronic

E-mode AlGaN/GaN HEMTs using p-NiO gates

Chao-Ching Chiang, Hsiao-Hsuan Wan, Jian-Sian Li, Fan Ren, Timothy Jinsoo Yoo, Honggyu Kim, S. J. Pearton

Summary: Sputtered p-NiO films were used to suppress gate leakage and produce a positive shift in the gate voltage of AlGaN/GaN high-electron mobility transistors for e-mode operation. The utility of NiO gates in increasing the on-off ratio and shifting the threshold voltage in comparison to Schottky gates was demonstrated.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B (2023)

暂无数据