4.6 Article

Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy

期刊

APPLIED PHYSICS LETTERS
卷 92, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2828990

关键词

-

向作者/读者索取更多资源

The ability to detect individual impurity atoms has been greatly enhanced by the development of aberration-corrected electron microscopes. The reduced depth of focus potentially enables three-dimensional reconstructions of impurity atoms from through-focal series. We test the robustness of this depth-sectioning method for detecting impurity atoms in gate oxides using multislice simulations. For amorphous materials, dopants can be reliably imaged, and are accurately described by a simpler three-dimensional linear imaging model. For crystalline materials, however, channeling artifacts can render the signal uninterpretable. These artifacts can be eliminated by orienting the crystal slightly off the zone axis, which still preserves atomic resolution. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据