4.7 Article

Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 98, 期 21, 页码 9139-9147

出版社

SPRINGER
DOI: 10.1007/s00253-014-6081-0

关键词

Amino acid metabolism; Biofuel; Isobutanol; 3-methyl-1-butanol; Saccharomyces cerevisiae

资金

  1. National Research Foundation (NRF) of Korea - Korean Government [2012-R1A1A-3011963]

向作者/读者索取更多资源

Saccharomyces cerevisiae naturally produces small amounts of isobutanol and 3-methyl-1-butanol via Ehrlich pathway from the catabolism of valine and leucine, respectively. In this study, we engineered CEN.PK2-1C, a leucine auxotrophic strain having a LEU2 gene mutation, for the production of isobutanol and 3-methyl-1-butanol. First, ALD6 encoding aldehyde dehydrogenase and BAT1 involved in valine synthesis were deleted to eliminate competing pathways. We also increased transcription of endogenous genes in the valine and leucine biosynthetic pathways by expressing Leu3 Delta 601, a constitutively active form of Leu3 transcriptional activator. For the production of isobutanol, genes involved in isobutanol production (ILV2, ILV3, ILV5, ARO10, and ADH2) were additionally overexpressed in ald6 Delta bat1 Delta strain expressing LEU3 Delta 601, resulting in 376.9 mg/L isobutanol production from 100 g/L glucose. To increase 3-methyl-1-butanol production, leucine biosynthetic genes were additionally overexpressed in the final isobutanol-production strain. The resulting strain overexpressing LEU2 and LEU4 (D578Y) , a feedback inhibition-insensitive mutant of LEU4, showed a 34-fold increase in 3-methyl-1-butanol synthesis compared with CEN.PK2-1C control strain, producing 765.7 mg/L 3-methyl-1-butanol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据