4.7 Article

Characterization of a novel endo-β-1,4-glucanase from Armillaria gemina and its application in biomass hydrolysis

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 98, 期 2, 页码 661-669

出版社

SPRINGER
DOI: 10.1007/s00253-013-4894-x

关键词

Biofuel; Endo-beta-1,4-glucanase; Glycoside hydrolase; Reducing sugar

资金

  1. Converging Research Center Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2011-50210]
  3. Konkuk University

向作者/读者索取更多资源

A novel endo-beta-1,4-glucanase (EG)-producing strain was isolated and identified as Armillaria gemina KJS114 based on its morphology and internal transcribed spacer rDNA gene sequence. A. gemina EG (AgEG) was purified using a single-step purification by gel filtration. The relative molecular mass of AgEG by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 65 kDa and by size exclusion chromatography was 66 kDa, indicating that the enzyme is a monomer in solution. The pH and temperature optima for hydrolysis were 5.0 and 60 A degrees C, respectively. Purified AgEG had the highest catalytic efficiency with carboxymethylcellulose (k (cat)/K (m) = 3,590 mg mL(-1) s(-1)) unlike that reported for any fungal EG, highlighting the significance of the current study. The amino acid sequence of AgEG showed homology with hydrolases from the glycoside hydrolase family 61. The addition of AgEG to a Populus nigra hydrolysate reaction containing a commercial cellulase mixture (Celluclast 1.5L and Novozyme 188) showed a stimulatory effect on reducing sugar production. AgEG is a good candidate for applications that convert lignocellulosic biomass to biofuels and chemicals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据