4.7 Article

Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 95, 期 4, 页码 1083-1094

出版社

SPRINGER
DOI: 10.1007/s00253-012-4197-7

关键词

Elementary mode analysis; Metabolic pathway analysis; Metabolic pathway design; Metabolic pathway alignment; Fermentation; Advanced biofuels; Isobutanol; n-Butanol; Ethanol; Rational strain design; Cofactor engineering

资金

  1. lab startup fund
  2. SEERC seed fund

向作者/读者索取更多资源

Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these defective metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (similar to 8-9 genes), addition (similar to 6-7 genes), up- and downexpression (similar to 6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in core metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据