4.7 Article

Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 85, 期 3, 页码 731-739

出版社

SPRINGER
DOI: 10.1007/s00253-009-2184-4

关键词

Sugar alcohols; Pentose sugars; Saccharomyces cerevisiae; Pentose phosphate pathway; D-ribose; Ribitol; NMR

资金

  1. Finnish Funding Agency for Technology and Innovation [4007/96]
  2. Finnish Academy (Centre of Excellence in White Biotechnology-Green Chemistry [118573]

向作者/读者索取更多资源

Phosphoglucose isomerase-deficient (pgi1) strains of Saccharomyces cerevisiae were studied for the production of D-ribose and ribitol from D-glucose via the intermediates of the pentose phosphate pathway. Overexpression of the genes coding for NAD(+)-specific glutamate dehydrogenase (GDH2) of S. cerevisiae or NADPH-utilising glyceraldehyde-3-phosphate dehydrogenase (gapB) of Bacillus subtilis enabled growth of the pgi1 mutant strains on D-glucose. Overexpression of the gene encoding sugar phosphate phosphatase (DOG1) of S. cerevisiae was needed for the production of D-ribose and ribitol; however, it reduced the growth of the pgi1 strains expressing GDH2 or gapB in the presence of higher D-glucose concentrations. The CEN.PK2-1D laboratory strain expressing both gapB and DOG1 produced approximately 0.4 g l(-1) of D-ribose and ribitol when grown on 20 g l(-1) (w/v) D-fructose with 4 g l(-1) (w/v) D-glucose. Nuclear magnetic resonance measurements of the cells grown with C-13-labelled D-glucose showed that about 60% of the D-ribose produced was derived from D-glucose. Strains deficient in both phosphoglucose isomerase and transketolase activities, and expressing DOG1 and GDH2 tolerated only low D-glucose concentrations (a parts per thousand currency sign2 g l(-1) (w/v)), but produced 1 g l(-1) (w/v) D-ribose and ribitol when grown on 20 g l(-1) (w/v) D-fructose with 2 g l(-1) (w/v) D-glucose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据