4.8 Article

A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes

期刊

APPLIED ENERGY
卷 87, 期 4, 页码 1453-1458

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2009.08.010

关键词

CO2 capture; Solid sorbents; Long-term or residual activity

向作者/读者索取更多资源

CaO-based regenerative sorbents for CO2 capture in power generation and H-2 production are receiving growing attention. A major challenge for this technology is the decay of sorbent activity with increasing number of the sorption/regeneration cycles. Evaluation of long-term sorbent activity currently requires substantial experimental work. In this study, the dependence of the activity on the number of sorption/regeneration cycles is examined, and the apparent dependence on the number of cycles is related to the duration of sorbent regeneration. By relating the decay in activity of the sorbent to its decrease in surface area due to sintering, interesting insights can be drawn. A method for determination of the long-term activity has been proposed, which can greatly reduce the experimental work for sorbent development and process evaluation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

The Gas Interchange between Bubble and Emulsion Phases in a Pressurized Fluidized Bed by Computational Fluid Dynamics Simulations

Wanqiang Wu, Lunbo Duan, Lin Li, Zhihao Yang, Daoyin Liu, Edward John Anthony

Summary: This study investigates the effects of pressure, superficial velocity, and particle size on gas interchange between bubble and emulsion phases in a high-temperature oxy-fuel fluidized bed. Both experiments and CFD simulations were used to analyze the gas interchange coefficient, which was found to decrease with increasing pressure and increase with increasing superficial velocity and particle size. The study proposes a formula to calculate the gas interchange coefficient considering the influence of pressure on the gas diffusion coefficient in a pressurized oxy-fuel fluidized bed.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2021)

Review Energy & Fuels

A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage

Hisham Al Baroudi, Adeola Awoyomi, Kumar Patchigolla, Kranthi Jonnalagadda, E. J. Anthony

Summary: The paper critically reviews CO2 shipping as a transportation option for CCUS, highlighting its potential role in global CO2 transport. It discusses technological advances in marine carrier CO2 transportation and explores its feasibility compared to other transportation options. Despite challenges, implementation of CO2 shipping is crucial to support CCUS both in the UK and worldwide.

APPLIED ENERGY (2021)

Article Energy & Fuels

A theoretical exploration of the effect and mechanism of CO on NO2 heterogeneous reduction over carbonaceous surfaces

Shuang Yue, Chunbo Wang, Ziyang Xu, Fei Zheng, Tong Si, Edward J. Anthony

Summary: This study uses density functional theory calculations to investigate the effect and mechanism of CO on NO2 reduction over carbonaceous surfaces, revealing the promotion of CO on CO2 desorption and its impact on electron transfer and energy barrier reduction.
Article Engineering, Environmental

Adsorption and desorption equilibrium of Li4SiO4-based sorbents for high-temperature CO2 capture

Shuzhen Chen, Jinze Dai, Changlei Qin, Weiyang Yuan, Vasilije Manovic

Summary: Research indicates that the equilibrium temperature for CO2 adsorption/desorption of Li4SiO4-based sorbents at high temperatures is higher than theoretical values, with silicon precursors and Ce/Fe dopants having minimal effects on equilibrium. Sorbents with K/Na exhibit significant drops in equilibrium temperature at 0.5 atm of CO2, and higher K doping results in lower turnover temperatures.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Applied

The role of H2O in structural nitrogen migration during coal devolatilization under oxy-steam combustion conditions

Shuang Yue, Chunbo Wang, Yulin Huang, Ziyang Xu, Jiaying Xing, Edward J. Anthony

Summary: Oxy-steam combustion is a promising technology for reducing CO2 emissions. This study investigated the transformation and release of nitrogen under oxy-steam conditions, revealing that char prepared in a N-2/H2O atmosphere has higher nitrogen content compared to a N-2 atmosphere. The presence of OH radicals inhibits the transformation of N-Q to N-6 and promotes the conversion of N-6 to N-5, ultimately leading to lower emissions of HCN and NH3 under N-2/H2O conditions.

FUEL PROCESSING TECHNOLOGY (2022)

Article Engineering, Environmental

The effect of W and Mo modification on arsenic adsorption over Cu/γ-Al2O3 catalyst: Experimental and theoretical analysis

Jiaying Xing, Chunbo Wang, Yulin Huang, Shuang Yue, Edward J. Anthony

Summary: This study investigated the effect of W and Mo modification on arsenic adsorption over Cu/gamma-Al2O3 catalyst. Results showed that W and Mo modification improved the NO conversion activities at low temperatures and reduced the arsenic adsorption on Cu/gamma-Al2O3 catalyst. W modification had a stronger promotion effect on arsenic resistance compared to Mo modification, and the proportion of As5+ on the W-Cu/gamma-Al2O3 surface was larger than that on the Mo-Cu/gamma-Al2O3 surface. Theoretical simulations revealed that Al2O3 adsorption on Mo-Cu/gamma-Al2O3 surface was stronger than that on W-Cu/gamma-Al2O3 surface.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Thermodynamics

The role of H2O in NO formation and reduction during oxy-steam combustion of bituminous coal char

Shuang Yue, Chunbo Wang, Ziyang Xu, Dong Wang, Fei Zheng, Edward J. Anthony

Summary: This study compared NO emissions during oxy-steam and air combustion of coal char, emphasizing the role of H2O and its resulting radicals in NO formation and reduction reactions. High concentrations of H2O promote the formation of OH radicals and hydroxyl groups during oxy-steam combustion, affecting NO formation and reduction reactions and ultimately NO emissions.

COMBUSTION AND FLAME (2022)

Article Energy & Fuels

Insight into the Mechanism and Effect of H2O on CaO Sulfation by Density Functional Theory

Liang Chen, Yuan Fang, Chunbo Wang, Yajin Huo, Wenjing Wang, Edward J. Anthony

Summary: This study investigates the mechanism and effects of H2O on CaO sulfation through density functional theory and experiments. The presence of H2O decreases the energy barrier for Ca2+ diffusion on the CaSO4 surface, enhances the outward diffusion of Ca2+, and improves the adsorption of SO2 on a CaSO4 surface.

ENERGY & FUELS (2022)

Article Energy & Fuels

Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation

Ayub Golmakani, Seyed Ali Nabavi, Basil Wadi, Vasilije Manovic

Summary: The use of biogas as a renewable energy resource has the potential to significantly reduce greenhouse gas emissions, however its share in the global renewable energy market does not reflect this potential. This study reviews advancements in biogas cleaning and upgrading technologies, addresses converting biogas to biomethane, and discusses the application of biogas in various technologies.
Article Chemistry, Applied

High-temperature filtration demonstration applying Fe-Al intermetallic membrane for a 410 t/h scale coal-fired power plants

Tong Si, Liang Chen, Chunbo Wang, Fuchun Ren, Yujie Ren, Edward J. Anthony

Summary: High-temperature filtration in coal units is an effective way to purify and utilize coal power. The results show that the high-temperature precipitator has good dust removal efficiency at different loads and has a smaller pressure drop compared to conventional filters. Compared to other treatment technologies, the high-temperature precipitator can reduce ammonia emissions in exhaust gas and significantly improve the air preheater blockage issue. Coal-fired power plants applying high-temperature precipitators can achieve energy consumption benefits and have a significant impact on reducing CO2 emissions.

FUEL PROCESSING TECHNOLOGY (2022)

Article Environmental Sciences

A country-level assessment of the deployment potential of greenhouse gas removal technologies

Jude O. Asibor, Peter T. Clough, Seyed Ali Nabavi, Vasilije Manovic

Summary: This study assesses the deployment potential of five greenhouse gas removal (GGR) technologies at the country level and identifies priority regions. The results indicate the need for countries to include and prioritize these technologies in their nationally determined contributions.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2022)

Article Thermodynamics

Intrinsic kinetics mechanisms for the catalytic reduction of NO by Na-loaded char

Shuang Yue, Chunbo Wang, Edward J. Anthony

Summary: A detailed investigation into the intrinsic kinetics mechanisms for the catalytic reduction of NO by Na-loaded char was conducted using DFT and TST calculations. The results revealed the essential role of the catalytic active center -O -Na in the interaction between NO and carbonaceous surface, with sensitivity to temperature and NO-to-CO stoichiometric ratio. Inspired by the findings, a conceptual approach for improving the catalytic performance of Na on NO reduction was proposed and shown to be theoretically feasible.

PROCEEDINGS OF THE COMBUSTION INSTITUTE (2023)

Article Chemistry, Multidisciplinary

Natural Gas Flaring Management System: A Novel Tool for Sustainable Gas Flaring Reduction in Nigeria

Robin Abu, Kumar Patchigolla, Nigel Simms, Edward John Anthony

Summary: The use of hydrocarbon fuels and natural gas flaring is increasing due to population growth and rising standards of living. This paper aims to establish a framework and management tool to reduce regular gas flaring in Nigeria. The tool incorporates techno-economic analysis to assist operators and investors in making more profitable investment decisions.

APPLIED SCIENCES-BASEL (2023)

Article Engineering, Environmental

Contributions of CH4-amine interactions by primary, secondary, and tertiary amines on CO2/CH4 separation efficiency

Basil Wadi, Chenhao Li, Vasilije Manovic, Peyman Moghadam, Seyed Ali Nabavi

Summary: In this study, the effects of primary, secondary, and tertiary amines on the adsorption of CO2 and CH4 were investigated. The adsorption performance and characteristics of the amine-functionalized adsorbents were analyzed. It was found that primary amines showed stronger interaction forces with CH4, while secondary amines were more selective in CO2/CH4 separations. Moderate densities of secondary amines were identified as potential candidates for adsorbent development.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Catalytic calcium-looping gasification of biochar with in situ CO2 utilization with improved energy efficiency

Ke Wang, Jie Chen, Tianyu Wang, Jie Hong, Pengfei Zhao, Edward J. Anthony

Summary: Capture and conversion of CO2 from optimal scenarios into fuels or chemicals provide a viable solution to combat climate change. The proposed synergistic integration of catalytic calcium-looping gasification of biochar can capture and in situ convert CO2. Experimental tests and characterizations showed that the mixture of limestone and K2CO3-impregnated biochar can enhance decarbonation kinetics and CO yield, maintaining stable CO2 conversion at lower temperatures. The process demonstrated practical scalability and cost-effectiveness, opening a unique direction for net-negative emission.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Energy & Fuels

Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting

Shitong Fang, Houfan Du, Tao Yan, Keyu Chen, Zhiyuan Li, Xiaoqing Ma, Zhihui Lai, Shengxi Zhou

Summary: This paper proposes a new type of nonlinear VIV energy harvester (ANVEH) that compensates for the decrease in peak energy output at low wind speeds by introducing an auxiliary structure. Theoretical and experimental results show that ANVEH performs better than traditional nonlinear VIV energy harvesters under various system parameter variations.

APPLIED ENERGY (2024)

Article Energy & Fuels

Evaluation method for the availability of solar energy resources in road areas before route corridor planning

Wei Jiang, Shuo Zhang, Teng Wang, Yufei Zhang, Aimin Sha, Jingjing Xiao, Dongdong Yuan

Summary: A standardized method was developed to evaluate the availability of solar energy resources in road areas, which combined the Analytic Hierarchy Process (AHP) and the Geographic Information System (GIS). By analyzing critical factors and using a multi-indicator evaluation method, the method accurately evaluated the utilization of solar energy resources and guided the optimal location selection for road photovoltaic (PV) projects. The results provided guidance for the application of road PV projects and site selection for route corridors worldwide, promoting the integration of transportation and energy.

APPLIED ENERGY (2024)

Article Energy & Fuels

Impacts of PTL coating gaps on cell performance for PEM water electrolyzer

Chang Liu, Jacob A. Wrubel, Elliot Padgett, Guido Bender

Summary: The study investigates the effects of coating defects on the performance of the anode porous transport layer (PTL) in water electrolyzers. The results show that an increasing fraction of uncoated regions on the PTL leads to decreased cell performance, with continuous uncoated regions having a more severe impact compared to multiple thin uncoated strips.

APPLIED ENERGY (2024)

Article Energy & Fuels

Coordinated pricing mechanism for parking clusters considering interval-guided uncertainty-aware strategies

Marcos Tostado-Veliz, Xiaolong Jin, Rohit Bhakar, Francisco Jurado

Summary: In this paper, a coordinated charging price mechanism for clusters of parking lots is proposed. The research shows that enabling vehicle-to-grid characteristics can bring significant economic benefits for users and the cluster coordinator, and vehicle-to-grid impacts noticeably on the risk-averse character of the uncertainty-aware strategies. The developed pricing mechanism can reduce the cost for users, avoiding to directly translate the energy cost to charging points.

APPLIED ENERGY (2024)

Article Energy & Fuels

The establishment of evaluation systems and an index for energy superpower

Duan Kang

Summary: Building an energy superpower is a key strategy for China and a long-term goal for other countries. This study proposes an evaluation system and index for measuring energy superpower, and finds that China has significantly improved its ranking over the past 21 years, surpassing other countries.

APPLIED ENERGY (2024)

Article Energy & Fuels

A model-based study of the evolution of gravel layer permeability under the synergistic blockage effect of sand particle transport and secondary hydrate formation

Fucheng Deng, Yifei Wang, Xiaosen Li, Gang Li, Yi Wang, Bin Huang

Summary: This study investigated the synergistic blockage mechanism of sand and hydrate in gravel filling layer and the evolution of permeability in the layer. Experimental models and modified permeability models were established to analyze the effects of sand particles and hydrate formation on permeability. The study provided valuable insights for the safe and efficient exploitation of hydrate reservoirs.

APPLIED ENERGY (2024)

Article Energy & Fuels

Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach

Hao Wang, Xiwen Chen, Natan Vital, Edward Duffy, Abolfazl Razi

Summary: This study proposes a HVAC energy optimization model based on deep reinforcement learning algorithm. It achieves 37% energy savings and ensures thermal comfort for open office buildings. The model has a low complexity, uses a few controllable factors, and has a short training time with good generalizability.

APPLIED ENERGY (2024)

Article Energy & Fuels

Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects

Moyue Cong, Yongzhuo Gao, Weidong Wang, Long He, Xiwang Mao, Yi Long, Wei Dong

Summary: This study introduces a multi-strategy ultra-wideband energy harvesting device that achieves high power output without the need for external power input. By utilizing asymmetry, stagger array, magnetic coupling, and nonlinearity strategies, the device maintains a stable output voltage and high power density output at non-resonant frequencies. Temperature and humidity monitoring are performed using Bluetooth sensors to adaptively assess the device.

APPLIED ENERGY (2024)

Article Energy & Fuels

Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform

Tianshu Dong, Xiudong Duan, Yuanyuan Huang, Danji Huang, Yingdong Luo, Ziyu Liu, Xiaomeng Ai, Jiakun Fang, Chaolong Song

Summary: Electrochemical water splitting is crucial for hydrogen production, and improving the hydrogen separation rate from the electrode is essential for enhancing water electrolyzer performance. However, issues such as air bubble adhesion to the electrode plate hinder the process. Therefore, a methodology to investigate the two-phase flow within the electrolyzer is in high demand. This study proposes using a microfluidic system as a simulator for the electrolyzer and optimizing the two-phase flow by manipulating the micro-structure of the flow.

APPLIED ENERGY (2024)

Article Energy & Fuels

A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system

Shuo Han, Yifan Yuan, Mengjiao He, Ziwen Zhao, Beibei Xu, Diyi Chen, Jakub Jurasz

Summary: Giving full play to the flexibility of hydropower and integrating more variable renewable energy is of great significance for accelerating the transformation of China's power energy system. This study proposes a novel day-ahead scheduling model that considers the flexibility limited by irregular vibration zones (VZs) and the probability of flexibility shortage in a hydropower-variable renewable energy hybrid generation system. The model is applied to a real hydropower station and effectively improves the flexibility supply capacity of hydropower, especially during heavy load demand in flood season.

APPLIED ENERGY (2024)

Article Energy & Fuels

Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting

Zhen Wang, Kangqi Fan, Shizhong Zhao, Shuxin Wu, Xuan Zhang, Kangjia Zhai, Zhiqi Li, Hua He

Summary: This study developed a high-performance rotary energy harvester (AI-REH) inspired by archery, which efficiently accumulates and releases ultralow-frequency vibration energy. By utilizing a magnetic coupling strategy and an accumulator spring, the AI-REH achieves significantly accelerated rotor speeds and enhanced electric outputs.

APPLIED ENERGY (2024)

Article Energy & Fuels

A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy

Yi Yang, Qianyi Xing, Kang Wang, Caihong Li, Jianzhou Wang, Xiaojia Huang

Summary: In this study, a novel hybrid Quantile Regression (QR) model is proposed for Probabilistic Load Forecasting (PLF). The model integrates causal dilated convolution, residual connection, and Bidirectional Long Short-Term Memory (BiLSTM) for multi-scale feature extraction. In addition, a Combined Probabilistic Load Forecasting System (CPLFS) is proposed to overcome the inherent flaws of relying on a single model. Simulation results show that the hybrid QR outperforms traditional models and CPLFS exceeds the best benchmarks in terms of prediction accuracy and stability.

APPLIED ENERGY (2024)

Article Energy & Fuels

Capacity fade prediction for vanadium redox flow batteries during long-term operations

Wen-Jiang Zou, Young-Bae Kim, Seunghun Jung

Summary: This paper proposes a dynamic prediction model for capacity fade in vanadium redox flow batteries (VRFBs). The model accurately predicts changes in electrolyte volume and capacity fade, enhancing the competitiveness of VRFBs in energy storage applications.

APPLIED ENERGY (2024)

Article Energy & Fuels

State-of-charge balancing strategy of battery energy storage units with a voltage balance function for a Bipolar DC mircrogrid

Yuechao Ma, Shengtie Wang, Guangchen Liu, Guizhen Tian, Jianwei Zhang, Ruiming Liu

Summary: This paper focuses on the balance of state of charge (SOC) among multiple battery energy storage units (MBESUs) and bus voltage balance in an islanded bipolar DC microgrid. A SOC automatic balancing strategy is proposed considering the energy flow relationship and utilizing the adaptive virtual resistance algorithm. The simulation results demonstrate the effectiveness of the proposed strategy in achieving SOC balancing and decreasing bus voltage unbalance.

APPLIED ENERGY (2024)

Article Energy & Fuels

Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings

Raad Z. Homod, Basil Sh. Munahi, Hayder Ibrahim Mohammed, Musatafa Abbas Abbood Albadr, Aissa Abderrahmane, Jasim M. Mahdi, Mohamed Bechir Ben Hamida, Bilal Naji Alhasnawi, A. S. Albahri, Hussein Togun, Umar F. Alqsair, Zaher Mundher Yaseen

Summary: In this study, the control problem of the multiple-boiler system (MBS) is formulated as a dynamic Markov decision process and a deep clustering reinforcement learning approach is applied to obtain the optimal control policy. The proposed strategy, based on bang-bang action, shows superior response and achieves more than 32% energy saving compared to conventional fixed parameter controllers under dynamic indoor/outdoor actual conditions.

APPLIED ENERGY (2024)