4.8 Article

Comparative study of structural properties and NOx storage-reduction behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 78, 期 3-4, 页码 288-300

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2007.09.030

关键词

NOx storage-reduction catalyst; ceria; pre-treatment; thermal analysis; X-ray absorption spectroscopy

向作者/读者索取更多资源

Differences in the NOx storage-reduction (NSR) behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 have been identified and traced to their different chemical and structural properties. The results show that Pt/Ba/CeO2 exhibits inferior NO, storage and, particularly, reduction (regeneration) activity compared to the Al2O3 supported catalyst. The incomplete reduction of the stored NOx-species in Pt/Ba/CeO2 seems to be caused by a faster and more profound reoxidation of Pt particles during the lean period as evidenced by in situ X-ray absorption spectroscopy. Interestingly, the reduction activity could be significantly improved by a pre-reduction step at mild conditions. Exposure of the Pt/Ba/CeO2 catalyst to reducing H-2 atmosphere in the temperature range 300-500 degrees C lead to a moderate increase of Pt particle size which beneficially influenced the regeneration activity. In contrast, pre-reduction at temperatures above 500 degrees C was unfavorable and resulted in a severe decrease of the regeneration activity, probably due to migration of the partially reduced CeO2 onto the surface of Pt particles. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Applied

Operando QEXAFS Study of Pt-Fe Ammonia Slip Catalysts During Realistic Driving Cycles

Vasyl Marchuk, Xiaohui Huang, Vadim Murzin, Jan-Dierk Grunwaldt, Dmitry E. Doronkin

Summary: This study investigates the reaction mechanism and performance variation of bifunctional Fe-Pt ammonia slip catalysts, revealing the significant influence of active metal state on reaction conditions and catalyst bed layout. The study also examines the impact of non-equilibrium phenomena on catalytic performance.

TOPICS IN CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Platinum-Iron(II) Oxide Sites Directly Responsible for Preferential Carbon Monoxide Oxidation at Ambient Temperature: An Operando X-ray Absorption Spectroscopy Study

Ilia I. Sadykov, Vitaly L. Sushkevich, Frank Krumeich, Rob Jeremiah G. Nuguid, Jeroen A. van Bokhoven, Maarten Nachtegaal, Olga V. Safonova

Summary: Operando X-ray absorption spectroscopy identifies a quantitative correlation between the concentration of Fe2+ species in Pt-FeOx catalysts and their carbon monoxide oxidation steady-state reaction rate. Deactivation of the catalysts occurs due to irreversible oxidation of active Fe2+ sites. Active Fe2+ species, presumed to be Fe+2O-2 clusters in contact with platinum nanoparticles, coexist with spectator trivalent oxidic iron (Fe3+) and partially alloyed metallic iron (Fe-0). The concentration of active sites and catalyst activity strongly depend on the pretreatment conditions. Fe2+ is the resting state of the active sites in the carbon monoxide oxidation cycle.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Probing the Nature of Zinc in Copper-Zinc-Zirconium Catalysts by Operando Spectroscopies for CO2 Hydrogenation to Methanol

Meng Yang, Jiafeng Yu, Anna Zimina, Bidyut Bikash Sarma, Lakshmi Pandit, Jan-Dierk Grunwaldt, Ling Zhang, Hengyong Xu, Jian Sun

Summary: Atomically dispersed Zn on ZrO2 support in Cu-based catalysts was achieved via double-nozzle flame spray pyrolysis method, showing superiority in methanol selectivity and yield compared to Cu-ZnO interface and isolated ZnO nanoparticles. Operando X-ray absorption spectroscopy revealed that the atomically dispersed Zn species were induced during the reaction due to the strengthened Zn-Zr interaction. This work provides insight into the rational design of unique Zn species and offers a new perspective for exploring complex interactions in multi-component catalysts.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Low-Valent Manganese Atoms Stabilized on Ceria for Nitrous Oxide Synthesis

Ivan Surin, Zhenchen Tang, Julian Geiger, Suyash Damir, Henrik Eliasson, Mikhail Agrachev, Frank Krumeich, Sharon Mitchell, Vita A. Kondratenko, Evgenii V. Kondratenko, Gunnar Jeschke, Rolf Erni, Nuria Lopez, Javier Perez-Ramirez

Summary: The discovery of low-valent manganese stabilized on ceria as a stable catalyst for ammonia oxidation to nitrous oxide offers a promising solution to the high manufacturing costs and suboptimal selectivity and stability of nitrous oxide synthesis. The catalyst exhibits higher productivity than state-of-the-art alternatives and establishes a structure-performance relationship.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Methane Oxidation over PdO: Towards a Better Understanding of the Influence of the Support Material

Kevin Keller, Patrick Lott, Steffen Tischer, Maria Casapu, Jan-Dierk Grunwaldt, Olaf Deutschmann

Summary: The presence of water vapor during the oxidation of methane over PdO-based catalysts inhibits the reaction and deactivates the catalyst. This study investigates the role of different support materials at various water concentrations in the reaction gas mixture. Compared to PdO/Al2O3, SnO2 and ZrO2 show enhanced catalytic activity and stability in the presence of 12% H2O, with CH4 conversion dropping by only 68%. The interaction between Pd species and catalyst support is characterized through thermogravimetric analysis, temperature-programmed reduction experiments, and TEM measurements, and a kinetic scheme is derived from the experimental data.

CHEMCATCHEM (2023)

Article Chemistry, Physical

Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization

Akash Bhimrao Shirsath, Manas Mokashi, Patrick Lott, Heinz Muller, Reihaneh Pashminehazar, Thomas Sheppard, Steffen Tischer, Lubow Maier, Jan-Dierk Grunwaldt, Olaf Deutschmann

Summary: Methane pyrolysis is an attractive process for hydrogen production and carbon sequestration. Understanding the formation of soot particles in methane pyrolysis reactors is important for scaling up the technology, requiring appropriate soot growth models. A numerical simulation is conducted, coupling a mono disperse model, plug flow reactor model, and reaction mechanisms to study the chemical conversion of methane, formation of C-C coupling products and polycyclic aromatic hydrocarbons, and growth of soot particles. The soot growth model considers the effective structure of aggregates and predicts soot mass, particle number, area, volume concentration, and size distribution. Experimental characterization of soot samples is carried out using Raman spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) for comparison.

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Correction Chemistry, Physical

Tracking and Understanding Dynamics of Atoms and Clusters of Late Transition Metals with In-Situ DRIFT and XAS Spectroscopy Assisted by DFT (vol 127, pg 3032, 2023)

Bidyut Bikash Sarma, Jelena Jelic, Dominik Neukum, Dmitry E. Doronkin, Xiaohui Huang, Sarah Bernart, Felix Studt, Jan-Dierk Grunwaldt

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Selectivity Control in Palladium-Catalyzed CH2Br2 Hydrodebromination on Carbon-Based Materials by Nuclearity and Support Engineering

Matteo Vanni, Vera Giulimondi, Andrea Ruiz-Ferrando, Frank Krumeich, Adam H. Clark, Sharon Mitchell, Nuria Lopez, Javier Perez-Ramirez

Summary: The lack of selective and stable catalysts hinders the practical implementation of CH2Br2 hydrodebromination to CH3Br. Palladium has potential as the most active metal for this reaction, but the tendency of metal nanoparticles to form C2+ products and methane limits its use. This study explores the impact of host effects on nanostructured palladium-based hydrodebromination catalysts, and identifies that stabilization of isolated Pd sites on carbon-based supports enables suppression of C-C coupling and promotes selective hydrogenation of the CH2Br* intermediate to CH3Br.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Pyrochlore-Type Iron Hydroxy Fluorides as Low-Cost Lithium-Ion Cathode Materials for Stationary Energy Storage

Julian Felix Baumgaertner, Michael Woerle, Christoph P. Guntlin, Frank Krumeich, Sebastian Siegrist, Valentina Vogt, Dragos C. Stoian, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V. Kravchyk, Maksym V. Kovalenko

Summary: Pyrochlore-type iron (III) hydroxy fluorides (Pyr-IHF) are attractive as low-cost stationary energy storage materials due to their stable supply of constituent elements, high energy densities, and fast Li-ion diffusion. However, their commercial use is currently hindered by the high costs of synthesis and cathode architecture. In this study, a facile and cost-effective dissolution-precipitation synthesis method for Pyr-IHF from soluble iron (III) fluoride precursors is presented. The synthesized Pyr-IHF demonstrates high capacity retention of >80% after 600 cycles at a high current density of 1 A g(-1) without complex electrode engineering. Operando synchrotron X-ray diffraction is used to guide the selective synthesis of Pyr-IHF and investigate the effect of different water contents on rate capability. Li-ion diffusion is found to occur in the 3D hexagonal channels of Pyr-IHF formed by corner-sharing FeF6-x(OH)(x) octahedra.

ADVANCED MATERIALS (2023)

Article Engineering, Environmental

Spatially-resolved investigation of CO2 methanation over Ni/γ-Al2O3 and Ni3.2Fe/γ-Al2O3 catalysts in a packed-bed reactor

Akash Bhimrao Shirsath, Mariam L. Schulte, Bjarne Kreitz, Steffen Tischer, Jan-Dierk Grunwaldt, Olaf Deutschmann

Summary: CO2 methanation via the Sabatier reaction using green H2 is a promising technique for achieving carbon-neutral energy balance. Nickel-based catalysts, due to their low cost and high activity, are commonly used. This study combined numerical simulations with microkinetics and mass transport limitations to compare the performance of two catalysts at different temperatures. Incorporating spectroscopy studies, the importance of integrating modeling with experiments was demonstrated to improve accuracy in multiscale models.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Multidisciplinary Sciences

Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination

Vera Giulimondi, Andrea Ruiz-Ferrando, Georgios Giannakakis, Ivan Surin, Mikhail Agrachev, Gunnar Jeschke, Frank Krumeich, Nuria Lopez, Adam H. Clark, Javier Perez-Ramirez

Summary: This study demonstrates the bifunctionality of carbon supports and metal sites in the acetylene hydrochlorination catalytic cycle, and proposes potential binding sites for acetylene and a viable reaction profile. The results highlight the importance of optimizing both metal and support components for catalyst design.

NATURE COMMUNICATIONS (2023)

Correction Chemistry, Physical

Correction to Tracking and Understanding Dynamics of Atoms and Clusters of Late Transition Metals with In-Situ DRIFT and XAS Spectroscopy Assisted by DFT (vol 127, pg 3032, 2023)

Bidyut Bikash Sarma, Jelena Jelic, Dominik Neukum, Dmitry E. Doronkin, Xiaohui Huang, Sarah Bernart, Felix Studt, Jan-Dierk Grunwaldt

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Structure sensitivity of alumina- and zeolite-supported platinum ammonia slip catalysts

Vasyl Marchuk, Xiaohui Huang, Jan-Dierk Grunwaldt, Dmitry E. Doronkin

Summary: The influence of Pt particle size and structure on the catalytic performance in selective ammonia oxidation for emission control applications is poorly understood. In this study, operando XAS was used to complement traditional laboratory tests to determine the factors governing activity and selectivity in Pt catalysts with different particle sizes. It was found that the increase in activity with particle size was mainly due to the presence of favorable Pt ensembles on the surface. Spectroscopic data revealed different reaction mechanisms for particles above and below a size threshold of about 2 nm. The evolution of these mechanisms correlated with catalyst activity and selectivity change.

CATALYSIS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Unlocking a Dual-Channel Pathway in CO2 Hydrogenation to Methanol over Single-Site Zirconium on Amorphous Silica

Meng Yang, Jiafeng Yu, Anna Zimina, Bidyut Bikash Sarma, Jan-Dierk Grunwaldt, Habib Zada, Linkai Wang, Jian Sun

Summary: Converting CO2 into methanol is of great significance in the sustainable methanol economy. In this study, single-site Zr species in an amorphous SiO2 matrix were created by enhancing the Zr-Si interaction in Cu/ZrO2-SiO2 catalysts. It was found that CO2 preferentially adsorbs on the interface of Cu and single-site Zr, rather than on ZrO2 nanoparticles. Methanol synthesis was verified to occur on single-dispersed Zr sites, while the ordinary formate pathway occurred on ZrO2 nanoparticles. This work opens up new possibilities for understanding the role of atomically dispersed oxides in catalysis science.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Enhancing catalytic activity of zeolitic octahedral metal oxides through zinc incorporation for ethane oxidative dehydrogenation

Bolun Yu, Denan Li, Qianqian Zhu, Shufan Yao, Lifeng Zhang, Yanshuo Li, Zhenxin Zhang

Summary: This study successfully improved the catalytic activity of a zeolitic octahedral metal oxide by incorporating a single zinc species into its micropore. The zinc incorporation achieved a high ethane conversion rate and ethylene selectivity. Mechanism study showed that the isolated zinc site played a crucial role in activating oxygen and ethane, as well as stabilizing intermediates and transition states.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Unveiling the synergistic effect between the metallic phase and bridging S species over MoS2 for highly efficient nitrogen fixation

Ruoqi Liu, Hao Fei, Jian Wang, Ting Guo, Fangyang Liu, Zhuangzhi Wu, Dezhi Wang

Summary: This work successfully synthesized a high-performing S-enriched MoS2 catalyst for electrocatalytic nitrogen reduction reaction (NRR), demonstrating high activity and selectivity. The synergistic effect of the 1T phase and bridging S22- species was shown to play a positive role in NRR performances, and DFT calculations revealed the mechanism behind the improved performance.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Polymethylhydrosiloxane-modified gas-diffusion cathode for more efficient and durable H2O2 electrosynthesis in the context of water treatment

Pan Xia, Lele Zhao, Xi Chen, Zhihong Ye, Zhihong Zheng, Qiang He, Ignasi Sires

Summary: This study presents a modified gas-diffusion electrode (GDE) for highly efficient and stable H2O2 electrosynthesis by using trace polymethylhydrosiloxane (PMHS). DFT calculations provide an in-depth understanding of the roles of PMHS functional groups.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air

Kwangchol Ri, Songsik Pak, Dunyu Sun, Qiang Zhong, Shaogui Yang, Songil Sin, Leliang Wu, Yue Sun, Hui Cao, Chunxiao Han, Chenmin Xu, Yazi Liu, Huan He, Shiyin Li, Cheng Sun

Summary: Different B-doped rGO catalysts were synthesized and their 2e- oxygen reduction reaction (ORR) performance was investigated. It was found that the 2e- ORR selectivity of B-doped rGO was influenced by the B content and oxygen mass transfer conditions. The synthesized catalyst exhibited high 2e- ORR selectivity and was capable of degrading organic pollutants continuously.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Oxygen vacancies-modified S-scheme heterojunction of Bi-doped La2Ti2O7 and La-doped Bi4Ti3O12 to improve the NO gas removal avoiding NO2 product

Li Lv, Lin Lei, Qi-Wen Chen, Cheng-Li Yin, Huiqing Fan, Jian-Ping Zhou

Summary: Monoclinic phase La2Ti2O7 and orthorhombic phase Bi4Ti3O12 are widely used in photocatalysis due to their layered crystal structure. The electronic structures of these phases play a crucial role in their photocatalytic activity. Heat treatment in a nitrogen atmosphere introduces more oxygen vacancies into the S-scheme heterojunction, leading to enhanced NO removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Understanding the synergistic effect of hydrated electron generation from argon plasma catalysis over Bi2O3/CeO2 for perfluorooctanoic acid dehalogenation: Mechanism and DFT study

Choe Earn Choong, Minhee Kim, Jun Sup Lim, Young June Hong, Geon Joon Lee, Keun Hwa Chae, In Wook Nah, Yeomin Yoon, Eun Ha Choi, Min Jang

Summary: In this study, the synergistic effect between argon-plasma-system (AP) and catalysts in promoting the production of reactive species for water remediation was investigated. By altering the oxygen vacancies concentration of CeO2/Bi2O3 catalyst, the production of hydrated electrons was stimulated for PFOA removal. The results showed that the built-in electric field in the Bi/Ce0.43 interface enhanced electron migration and eaq- generation, leading to improved PFOA removal efficiency.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination

Yushan Wu, Di Xu, Yanfei Xu, Xin Tian, Mingyue Ding

Summary: Efficient synthesis of primary amines from carbonyl compounds was achieved via reductive amination using Ru@NC-Al2O3 as a catalyst, exhibiting high activity and selectivity under mild conditions.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Efficient 1O2 production from H2O2 over lattice distortion controlled spinel ferrites

Yilan Jiang, Peifang Wang, Tingyue Chen, Keyi Gao, Yiran Xiong, Yin Lu, Dionysios D. Dionysiou, Dawei Wang

Summary: By controlling the content of Co and Ni in Co1-xNixFe2O4, the production of O-1(2) from H2O2 can be regulated. NiFe2O4, with the lowest lattice distortion degree, can efficiently produce O-1(2) as the dominant reactive oxygen species. The system also exhibits significant resistance to water matrix interference.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Tailoring the Mo-N/Mo-O configuration in MoO2/Mo2N heterostructure for ampere-level current density hydrogen production

Shuai Feng, Donglian Li, Hao Dong, Song Xie, Yaping Miao, Xuming Zhang, Biao Gao, Paul K. Chu, Xiang Peng

Summary: In this study, MoO2/Mo2N heterostructures were prepared by regulating the coordination of Mo atoms. The electrocatalyst exhibits high current density and excellent stability for hydrogen evolution reaction.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Spin state-tailored tetrahedral and octahedral cobalt centers on millimetric Co-Al oxide catalysts as dual sites for synergistic peroxymonosulfate activation

Jia-Cheng E. Yang, Min -Ping Zhu, Daqin Guan, Baoling Yuan, Darren Delai Sun, Chenghua Sun, Ming-Lai Fu

Summary: This study successfully modulated the electron configuration and spin state of millimetric metal catalysts by adjusting the support curvature radius. The electronic structure-oriented spin catalysis was found to affect the degradation of pollutants, providing new insights for the design and production of highly active, reusable, and stable catalysts.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

Cu nanocrystals coupled with poly (heptazine imide) for synergistically enhanced photocatalytic CH3SH elimination: Facet engineering strengthened electron pump effect

Tao Zhong, Su Tang, Wenbin Huang, Wei Liu, Huinan Zhao, Lingling Hu, Shuanghong Tian, Chun He

Summary: In this study, a highly efficient photocatalyst for the elimination of CH3SH was developed by engineering different crystal facets and coupling them with PHI. Cu (111)/PHI exhibited the highest elimination efficiency and showed good stability and reusability. The enhanced surface electron pump effect and effective adsorption mechanisms were revealed through comprehensive characterizations and DFT calculations.

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY (2024)

Article Chemistry, Physical

NiSn intermetallic nanoparticles with geometrically isolated Ni sites for selective C-O cleavage of furfural

Feifei Yang, Tianyu Zhang, Jiankang Zhao, Wei Zhou, Nicole J. Libretto, Jeffrey T. Miller

Summary: A Ni3Sn intermetallic nano particle was found to have geometrically isolated Ni sites that could selectively cleave C-O bonds in biomass derivatives. This nano particle showed high activity and selectivity towards 2-methylfuran, unlike Ni nanoparticles that produced other unwanted products derived from the aromatic rings.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Nickel-facilitated in-situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia

Lulu Qiao, Di Liu, Anquan Zhu, Jinxian Feng, Pengfei Zhou, Chunfa Liu, Kar Wei Ng, Hui Pan

Summary: This study reveals that surface evolution plays a crucial role in enhancing the electrocatalytic performance of transition metal oxides for electrochemical nitrate reduction reaction (e-NO3RR). Incorporating nickel into Co3O4 can promote surface reconstruction and improve the adsorption of intermediates and reduce energy barriers, leading to enhanced catalytic performance. The reconstructed cobalt-nickel hydroxides (CoyNi1_y(OH)2) on the catalyst's surface serve as the active phase.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Unraveling the discriminative mechanisms for peroxy activation via atomically dispersed Fe-N5 sites for tunable water decontamination

Xinyu Song, Yang Shi, Zelin Wu, Bingkun Huang, Xinhao Wang, Heng Zhang, Peng Zhou, Wen Liu, Zhicheng Pan, Zhaokun Xiong, Bo Lai

Summary: This study explores the discriminative activities and mechanisms for activation of O-O bond in peroxy compounds via single-atom catalysts (SACs) with higher coordination numbers (M-N5). The atomic catalyst (Fe-SAC) with Fe-N5 as the active center was constructed, effectively activating peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2O2). The study demonstrates the degradation efficiencies of acyclovir are related to the O-O bond length in different peroxy compounds, and reveals the discriminative mechanisms for activation of O-O bond in different Fenton-like systems.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)

Article Chemistry, Physical

Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen

Yangzhuo He, Hong Qin, Ziwei Wang, Han Wang, Yuan Zhu, Chengyun Zhou, Ying Zeng, Yicheng Li, Piao Xu, Guangming Zeng

Summary: A dual-metal-organic framework (MOF) assisted strategy was proposed to construct a magnetic Fe-Mn oxycarbide anchored on N-doped carbon for peroxymonosulfate (PMS) activation. The FeMn@NC-800 catalyst exhibited superior activity with almost 100% degradation of sulfamethazine (SMZ) in 30 minutes. The study provided insights for the rational design of high-performance heterogeneous catalysts and proposed a novel nonradical-based catalytic oxidation for environmental cleaning.

APPLIED CATALYSIS B-ENVIRONMENTAL (2024)