4.6 Article

Catalyst testing in a multiple-parallel, gas-liquid, powder-packed bed microreactor

期刊

APPLIED CATALYSIS A-GENERAL
卷 365, 期 2, 页码 199-206

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2009.06.010

关键词

Hydrogenation; High-throughput experimentation; Trickle bed; Packing

资金

  1. Shell Global Solutions
  2. Albemarle Catalysts Company

向作者/读者索取更多资源

The use of a three-phase plug-flow microreactor with powder catalysts to obtain intrinsic kinetics is reported. Our test reaction is the hydrogenation of biphenyl over a Pt-Pd/Al2O3 catalyst. We compare reaction rates obtained in both our microreactor and a standard hydrogenation autoclave. The reactor design consists of six parallel reactor tubes with an inner diameter of 2.2 mm and a maximum catalyst-bed length of 200 mm. Co-flowing two phases very slowly over the bed needs more care than running only a liquid or a gas. Our main contribution in this work is to stress the impact of hydrodynamic anomalies, most importantly stagnant zones of gas and liquid, which occurred in reactor columns where diluent and catalyst were unevenly distributed. Such packing irregularities caused huge variations in conversion levels from tube to tube. In contrast, using a proper way to load the solids evenly, we could get the same results in each reactor tube. The values of these kinetic constants were identical to the ones we obtained in the autoclave. The well-known effect that too much dilution causes loss of conversion is found to be stronger than that in gas-solid systems. We visualized flow patterns in a 2-dimensional reactor mock-up and found such stagnant zones in segregated beds. Scaling down a continuous packed-bed reactor to reliably measure catalytic kinetics for gas-liquid-solid reactions is possible under specified conditions described herein. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据