4.6 Article

The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors

期刊

APPLIED CATALYSIS A-GENERAL
卷 344, 期 1-2, 页码 36-44

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2008.03.036

关键词

chemical synthesis; electron microscopy; diffusion; oxidation

向作者/读者索取更多资源

The polyol process is simple to conduct and can enhance the diffusion of active sites and control the shape of the active phase during catalyst preparation. Activated carbon (AC) was chosen as the support, and copper nitrate, copper acetate, and copper sulfate were used as precursors to prepare the AC-supported copper catalysts. Toluene was chosen as the pollutant for the activity test. The experimental results showed that the copper particles were nanosized and were highly dispersed on the AC; such dispersion improved the thermal stabilization of the AC-supported catalyst. The copper content observed in an inductively coupled plasma-mass spectrometer was the same even for increased amounts of copper sulfate; however, for the other two precursors, the copper content increased with the amount of precursor. Different precursors gave rise to different types of active phases. For example, when copper acetate was used as the precursor, the catalyst had pellet (50-70 nm)- and cubic (>1 mu m)-shaped active phases. The activities of the copper catalysts were in the order copper nitrate > copper acetate > copper sulfate. Among the catalysts tested, Cu-N/Al2O3 with 5 wt.% Cu loading exhibited the highest activity at 158,720 h(-1). For Al2O3-supported catalysts prepared by the polyol process, the Cu-A/Al2O3 catalyst exhibited the highest activity. Thus, the polyol process has the potential to be used in catalyst preparation along with various different precursors to control gaseous pollutants. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Ceramics

Evaluating the photocatalytic activity of Pt/TNT film catalyst

Yong-Ming Dai, Chi-Yuan Lu, Yu-Tsai Pan

CERAMICS INTERNATIONAL (2016)

Article Chemistry, Physical

NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes

Kui-Hao Chuang, Chi-Yuan Lu, Ming-Yen Wey, Ya-Ni Huang

APPLIED CATALYSIS A-GENERAL (2011)

Article Agricultural Engineering

Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation

Jung-Chun Chen, Kai-Sung Wang, Hsien Chen, Chi-Yuan Lu, Lung-Chiu Huang, Heng-Ching Li, Tzu-Huan Peng, Shih-Hsien Chang

BIORESOURCE TECHNOLOGY (2010)

Article Engineering, Environmental

Catalytic removal of NO and PAHs over AC-supported catalysts from incineration flue gas: Bench-scale and pilot-plant tests

Hui-Hsin Tseng, Chi-Yuan Lu, Feng-Yim Chang, Ming-Yen Wey, Han-Tsung Cheng

CHEMICAL ENGINEERING JOURNAL (2011)

Article Engineering, Chemical

Influence of Catalysts on the Preparation of Carbon Nanotubes for Toluene Oxidation

Kui H. Chuang, Zhen S. Liu, Chi Y. Lu, Ming Y. Wey

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2009)

Article Chemistry, Physical

Copper catalysts prepared via microwave-heated polyol process for preferential oxidation of CO in H2-rich streams

Kui-Hao Chuang, Kaimin Shih, Chi-Yuan Lu, Ming-Yen Wey

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2013)

Article Environmental Sciences

Evaluating the potential of CNT-supported Co catalyst used for gas pollution removal in the incineration flue gas

Chi-Yuan Lu, Hui-Hsin Tseng, Ming-Yen Wey, Kui-Hao Chuang, Jia-Hong Kuo

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2009)

Article Engineering, Environmental

Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay

Kai-Sung Wang, Chi-Yuan Lu, Shih-Hsien Chang

JOURNAL OF HAZARDOUS MATERIALS (2011)

Article Materials Science, Multidisciplinary

CuO/CeO2 catalysts prepared with different cerium supports for CO oxidation at low temperature

Chi-Yuan Lu, Wen-Chi Chang, Ming-Yen Wey

MATERIALS CHEMISTRY AND PHYSICS (2013)

Article Materials Science, Multidisciplinary

Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process

Chi-Yuan Lu, Hui-Hsin Tseng, Ming-Yen Wey, Ling-Yi Liu, Kui-Hao Chuang

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2009)

Article Materials Science, Multidisciplinary

Effects of microwave power and polyvinyl pyrrolidone on microwave polyol process of carbon-supported Cu catalysts for CO oxidation

Kui-Hao Chuang, Chi-Yuan Lu, Ming-Yen Wey

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2011)

Article Engineering, Chemical

Removal of NO and fly ash over a carbon supported catalyst: Effects of fly ash concentration and operating time

Chi-Yuan Lu, Jui-Yeh Rau, Jyh-Cherng Chen, Shih-Teng Huang, Ming-Yen Wey

POWDER TECHNOLOGY (2013)

Article Chemistry, Physical

Study of SBA-15 supported catalysts for toluene and NO removal: the effect of promoters (Co, Ni, Mn, Ce)

Kui-Hao Chuang, Zhen-Shu Liu, Yu-Hao Chang, Chi-Yuan Lu, Ming-Yen Wey

REACTION KINETICS MECHANISMS AND CATALYSIS (2010)

Article Chemistry, Multidisciplinary

Catalytic activity of mesoporous Ni/CNT, Ni/SBA-15 and (Cu, Ca, Mg, Mn, Co)-Ni/SBA-15 catalysts for CO2 reforming of CH4

Yong-Ming Dai, Chi-Yuan Lu, Chi-Jen Chang

RSC ADVANCES (2016)

Article Chemistry, Physical

Enhancing oxygen reduction reaction with Pt-decorated Cu@Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement

Ming-Yi Chen, Ngoc Thanh Thuy Tran, Ahmed Abubakar Alao, Wen-Dung Hsu

Summary: This study demonstrates the significance of surface Pt atom arrangement for the efficiency of ORR in PEMFCs and reveals the correlation between Pt-Pt average distance and O2 dissociation barrier. Furthermore, the study discovers a robust correlation between the level of the catalyst's d-band center and O2 adsorption energy. High-entropy alloy substrates provide potential for controlling Pt arrangement and O2 dissociation barrier.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers

Eduardo C. Atayde Jr, Babasaheb M. Matsagar, Yu-Cheng Wang, Kevin C. -W. Wu

Summary: This study presents the first application of an acidic MOF, Sulfated MOF-808, in catalyzing the HAA reactions of furan oligomers for the production of biofuel precursors. The catalyst showed high yield, selectivity, and recyclability, making it versatile for different starting materials.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts

Maria do Carmo Rangel, Francieli Martins Mayer, Soraia Jesus de Oliveira, Sergio Gustavo Marchetti, Fabricio Luiz Faita, Doris Ruiz, Giovanni Saboia, Mariana Kieling Dagostini, Jonder Morais, Maria do Carmo Martins Alves

Summary: This study developed a new catalyst by investigating the effect of magnesium on the catalytic properties of hematite in ethylbenzene dehydrogenation. The catalyst showed important differences in activity, selectivity, and stability, making it a promising candidate for commercial applications.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective oxidation of methacrolein to methacrylic acid over CsH3PMo11VO40 with structural defects

Yanjun Li, Qian Wang, Hui Tian, Mingyuan Zhu, Yuanyuan Liu

Summary: A novel strategy using microwave-assisted precipitation was proposed to prepare defective CsH3PMo11VO40 catalyst for the oxidation of methacrolein to methacrylic acid. Microwave treatment accelerates crystallization, increases vanadyl species content, and forms defective Keggin structures, thereby enhancing the oxidation capacity of the catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives

Rajeshwari Athavale, Sailee Gardi, Fatima Choudhary, Dayanand Patil, Nandkishor Chandan, Paresh More

Summary: In this study, a novel acidic ionic liquid catalyst was prepared and used for the synthesis of bis-indolyl methane derivatives. The catalyst exhibited short reaction times, easy purification, and reusability.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

The chemical state and Cu plus stability for three-way catalytic performance of Cu-added Al2O3 catalysts

Masatomo Hattori, Takato Hattori, Masakuni Ozawa

Summary: Cu-added gamma-Al2O3 catalysts were prepared with varying Cu loadings and the effects of copper oxidation states on catalytic activity were investigated. The results showed that the addition of copper increased the catalyst activity, but excessive copper loading decreased catalytic activity. XRD and TEM analysis indicated the formation of a solid solution of copper oxide species on the surface of gamma-Al2O3. XAS and TPR data demonstrated variations in copper oxidation states among the catalysts.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Enhanced oxygen reduction catalytic performance of PtNi alloy through modulating metal-support interaction

Liwei Fang, Shiyang Niu, Shengsen Wang, Yiqing Lu, Yuanhui Cheng

Summary: In this study, PtNi alloy on nitrogen-doped carbon and SnO2 dual-support was designed to modulate the metal-support interaction, resulting in improved catalytic activity and stability for oxygen reduction reaction. The SnO2/PtNi/NC catalyst exhibited a strongly coupled interface, enhanced electron transfer, and higher half-wave potential compared to PtNi/NC and commercial Pt/C.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrOX/H-MFI composite catalyst with long-term stability

Shohei Harada, Duanxing Li, Kenta Iyoki, Masaru Ogura

Summary: This study investigates the catalytic performance of a composite catalyst composed of ZnZrOX and H-zeolite for the hydrogenation of CO2. The deactivation of the composite catalyst is influenced by ion exchange of Zn2+ and/or coke, with their effects differing based on the zeolite structure. Separating the grains of the composite catalyst can prevent deactivation.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts

Laura Proano, Christopher W. Jones

Summary: In this study, NiGa alloy particles supported on CeO2, ZrO2, and ZrO2-CeO2 solid solutions were prepared and characterized. The nature of the support was found to have a significant influence on the catalyst's activity and selectivity, with the crystalline structure of ZrO2 having the greatest impact. Pure ZrO2 showed the highest methanol selectivity and CO2 conversion at high Zr:Ce ratios. In equimolar and Ce-rich conditions, basic sites and oxygen vacancies were found to be the key parameters affecting methanol production.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Reductive amination of 1,6-hexanediol with a modified Ru/Al2O3 catalyst

Liyan Zhang, Yinze Yang, Leilei Zhou, Fengyu Zhao, Haiyang Cheng

Summary: 1,6-Hexamethylenediamine was successfully synthesized via the reductive amination of 1,6-hexanediol using a Ru/PRL(x)-Al2O3 catalyst. The highly dispersed and anchored Ru species, formed by 1,10-phenanthroline (PRL), played a crucial role in the catalytic reaction. The formation of new acid-base pairs, electron deficient Ru species, and smaller nanoparticles contributed to the improved catalytic performances of the Ru/PRL-Al2O3 catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Longevity increase of an impregnated Ni/CeO2-Al2O3 dry reforming catalyst by indium

Anita Horvath, Miklos Nemeth, Andrea Beck, Gyorgy Safran, Valeria La Parola, Leonarda Francesca Liotta, Gregor Zerjav, Matevz Roskaric, Albin Pintar

Summary: This study investigates the catalytic and structural changes caused by the addition of 0.25 wt% indium in a 3% Ni/CeO2-Al2O3 catalyst prepared by impregnation method. The results show that the addition of indium can decrease the activity of the catalyst, but it improves its stability and reduces coking.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst

Ankush Kularkar, Vaibhav Vilas Khedekar, Sachin D. Chaudhari, Mudavath Ravi, Sadhana S. Rayalu, Penumaka Nagababu

Summary: Efficiently addressing the challenges of photocatalytic CO2 reduction to CH3OH is crucial. This study developed Zn-BTC MOF and its composites with CaIn2S4, achieving highly efficient and robust photocatalytic CO2 reduction to CH3OH under ambient conditions, using H2O2 as the hydrogen source. Among the composites, ZMCIS4 demonstrated excellent performance with a CH3OH evolution of 49100 μmol/g.cat and a quantum efficiency of approximately 78.41%. The enhanced performance was attributed to the production of nascent hydrogen atoms (H center dot) through the photo-splitting of H2O2 on the ZMCIS surface.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Numerous active sites in self-supporting Co3O4 nanobelt array for boosted and stabilized 5-hydroxymethylfurfural electro-oxidation

Dan Liu, Yudong Li, Chengyu Wang, Haiyue Yang, Rong Wang, Shujun Li, Xiaohui Yang

Summary: In this study, a self-supporting three-dimensional porous Co3O4 nanobelt array decorated on nickel foam (P-Co3O4 -NBA@NF) electrode with numerous active sites was successfully constructed for the oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA). The P-Co3O4 -NBA@NF electrode demonstrated high conversion efficiency, selectivity, and Faraday efficiency, as well as remarkable long-term stability. This research provides a promising electrocatalyst for biomass conversion.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene

Yimin Li, Enggah Kurniawan, Fumiya Sato, Takayoshi Hara, Yasuhiro Yamada, Satoshi Sato

Summary: In this study, several silica-alumina catalysts modified with Ag were examined for the dehydration of 1,3-butanediol to 1,3-butadiene. Among them, an amorphous silica-alumina catalyst (SAL-3) modified with Ag showed the highest improvement in catalytic activity and stability when operated in H2 flow. The generation of reversible acid sites was found to be the reason behind the enhanced activity and stability of this Ag/SAL-3 catalyst. The effects of various parameters on the catalytic activity of Ag/SAL-3, such as reaction temperature, contact time, Ag content, and carrier gas, were investigated.

APPLIED CATALYSIS A-GENERAL (2024)