4.4 Article

Influence of Blocking of 2,3-Butanediol Pathway on Glycerol Metabolism for 1,3-Propanediol Production by Klebsiella oxytoca

期刊

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
卷 168, 期 1, 页码 116-128

出版社

SPRINGER
DOI: 10.1007/s12010-011-9363-3

关键词

1,3-Propanediol; 2,3-Butanediol; alpha-Acetolactate decarboxylase; Reducing equivalent; Klebsiella oxytoca

资金

  1. National Natural Science Foundation of China [30900029]

向作者/读者索取更多资源

Glycerol metabolism is a typical biological oxidoreductive reaction. 1,3-Propanediol (1,3-PD) is the final product of the reductive branch, while acetate, succinate, lactate, 2,3-butanediol (2,3-BD), and ethanol were produced in the oxidative branch. 2,3-BD, which has similar properties of high boiling point and water solubility with 1,3-PD, not only contests the carbon flow and NADH with 1,3-PD but also serves as an obstacle for obtaining high purity 1,3-PD in downstream processes. In this study, a 2,3-BD pathway-deficient mutant of Klebsiella oxytoca ZG36 was constructed by knocking out the budA gene of the wild-type strain M5al. The results of fed-batch fermentation by ZG36 indicated that the glycerol flux and the distribution of metabolites were altered in the K. oxytoca when the 2,3-BD pathway was blocked. No 2,3-BD was produced, and the activity of alpha-acetolactate decarboxylase (alpha-ALDC) can not be detected in the fermentation processes. The indexes of the 1,3-PD titer, the conversion from glycerol to 1,3-PD, and the productivity per cell dry weight (CDW) increased by 42%, 62%, and 46%, respectively, compared with the M5al, and the yield of the byproducts also increased obviously. The assay of the enzyme activities in the oxidative branch and the reductive branch of the glycerol metabolism, as well as the intracellular redox state, exposited the results logically.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据