4.6 Article

Insertional inactivation of branched-chain α-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 74, 期 19, 页码 5882-5890

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00882-08

关键词

-

资金

  1. Trustees Research Funds
  2. USDA National Research Initiative Competitive [2006-35201-17386]

向作者/读者索取更多资源

Staphylococcus aureus is a major community and nosocomial pathogen. Its ability to withstand multiple stress conditions and quickly develop resistance to antibiotics complicates the control of staphylococcal infections. Adaptation to lower temperatures is a key for the survival of bacterial species outside the host. Branched-chain alpha-keto acid dehydrogenase (BKD) is an enzyme complex that catalyzes the early stages of branched-chain fatty acid (BCFA) production. In this study, BKD was inactivated, resulting in reduced levels of BCFAs in the membrane of S. aureus. Growth of the BKD-inactivated mutant was progressively more impaired than that of wild-type S. aureus with decreasing temperature, to the point that the mutant could not grow at 12 degrees C. The growth of the mutant was markedly stimulated by the inclusion of 2-methylbutyrate in the growth medium at all temperatures tested. 2-Methylbutyrate is a precursor of odd-numbered anteiso fatty acids and bypasses BKD. Interestingly, growth of wild-type S. aureus was also stimulated by including 2-methylbutyrate in the medium, especially at lower temperatures. The anteiso fatty acid content of the BKD-inactivated mutant was restored by the inclusion of 2-methylbutyrate in the medium. Fluorescence polarization measurements indicated that the membrane of the BKD-inactivated mutant was significantly less fluid than that of wild-type S. aureus. Consistent with this result, the mutant showed decreased toluene tolerance that could be increased by the inclusion of 2-methylbutyrate in the medium. The BKD-inactivated mutant was more susceptible to alkaline pH and oxidative stress conditions. Inactivation of the BKD enzyme complex in S. aureus also led to a reduction in adherence of the mutant to eukaryotic cells and its survival in a mouse host. In addition, the mutant offers a tool to study the role of membrane fluidity in the interaction of S. aureus with antimicrobial substances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据