4.7 Article

Disruption of Endothelial Cell Mitochondrial Bioenergetics in Lambs with Increased Pulmonary Blood Flow

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 18, 期 14, 页码 1739-1752

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.4806

关键词

-

资金

  1. National Institutes of Health [HL60190, HL67841, HL084739, R21HD057406, HL61284, 5T32-HL06699]
  2. Fondation Leducq
  3. American Heart Association National Office
  4. Cardiovascular Discovery Institute
  5. [F32HL103136]

向作者/读者索取更多资源

Aims: The mitochondrial dysfunction in our lamb model of congenital heart disease with increased pulmonary blood flow (PBF) (Shunt) is associated with disrupted carnitine metabolism. Our recent studies have also shown that asymmetric dimethylarginine (ADMA) levels are increased in Shunt lambs and ADMA increases the nitration of mitochondrial proteins in lamb pulmonary arterial endothelial cells (PAEC) in a nitric oxide synthase (NOS)-dependent manner. Thus, we determined whether there was a mechanistic link between endothelial nitric oxide synthase (eNOS), ADMA, and the disruption of carnitine homeostasis in PAEC. Results: Exposure of PAEC to ADMA induced the redistribution of eNOS to the mitochondria, resulting in an increase in carnitine acetyl transferase (CrAT) nitration and decreased CrAT activity. The resulting increase in acyl-carnitine levels resulted in mitochondrial dysfunction and the disruption of mitochondrial bioenergetics. Since the addition of l-arginine prevented these pathologic changes, we examined the effect of l-arginine supplementation on carnitine homeostasis, mitochondrial function, and nitric oxide (NO) signaling in Shunt lambs. We found that the treatment of Shunt lambs with l-arginine prevented the ADMA-mediated mitochondrial redistribution of eNOS, the nitration-mediated inhibition of CrAT, and maintained carnitine homeostasis. In turn, adenosine-5'-triphosphate levels and eNOS/heat shock protein 90 interactions were preserved, and this decreased NOS uncoupling and enhanced NO generation. Innovation: Our data link alterations in cellular l-arginine metabolism with the disruption of mitochondrial bioenergetics and implicate altered carnitine homeostasis as a key player in this process. Conclusion: l-arginine supplementation may be a useful therapy to prevent the mitochondrial dysfunction involved in the pulmonary vascular alterations secondary to increased PBF. Antioxid. Redox Signal. 18, 1739-1752.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据