4.7 Article

Bifunctional Enzyme SpoT Is Involved in Biofilm Formation of Helicobacter pylori with Multidrug Resistance by Upregulating Efflux Pump Hp1174 (gluP)

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00957-18

关键词

Helicobacter pylori; SpoT; efflux pump; biofilm; antibiotic resistance; GluP

资金

  1. National Natural Science Foundation of China [81471991, 81671978, 81460314, 81374101, 81571960]

向作者/读者索取更多资源

The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The ability of H. pylori to form biofilms on the gastric mucosa is known. However, there are few studies on the regulatory mechanisms of H. pylori biofilm formation and multidrug resistance. Guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized in H. pylori by the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role in H. pylori biofilm formation and multidrug resistance. Therefore, it was necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multi-drug resistance of bacteria, we tried to determine whether efflux pumps controlled by SpoT participate in these activities. We found that Hp1174 (glucose/galactose transporter (glue]), an efflux pump of the major facilitator superfamily (MFS), is highly expressed in biofilm-forming and multi-drug-resistant (MDR) H. pylori strains and is upregulated by SpoT. Through further research, we determined that gluP is involved in H. pylori biofilm formation and multidrug resistance. Furthermore, the average expression level of gluP in the clinical MDR strains (C-MDR) was considerably higher than that in the clinical drug-sensitive strains (C-DSS). Taken together, our results revealed a novel molecular mechanism of H. pylori resistance to multidrug exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据