4.6 Review Book Chapter

Shock Events in the Solar System: The Message from Minerals in Terrestrial Planets and Asteroids

期刊

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-earth-042711-105538

关键词

impacts; high pressure; meteorites; craters; melt pockets; shear melt veins

向作者/读者索取更多资源

Impacts are central to the origin and evolution of planets of the Solar System. The shapes of craters, which can reach up to 1,000 km in diameter on the Moon, provide critical information on the large-scale dynamics of the impact and related shock. Minerals formed at high pressure and temperature found in shocked terrestrial rocks and meteorites give additional and complementary insights on the shock process at a smaller scale, typically from a few micrometers to a few millimeters. Local flaws in rocks, such as voids and mineral interfaces, are the preferential sites for the formation of high-pressure melts and minerals. Calculations based on the physics of shocks and the thermodynamics and kinetics of mineral transformations provide orders of magnitude for the duration, transient pressure, and prevailing temperature conditions of shock events. Case studies on shocked terrestrial and extraterrestrial materials illustrate the links between these parameters and impact duration. Many of the high-pressure mineral phases of olivine, pyroxenes, feldspars, silica, phosphates, titanium oxide, and carbon have been discovered in these heavily shocked rocks and provide unique opportunities to study the high-pressure minerals that exist in the deep Earth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据