4.7 Article

Identifying Critical Components of Native Ca2+-triggered Membrane Fusion

期刊

MECHANISMS OF EXOCYTOSIS
卷 1152, 期 -, 页码 121-134

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1749-6632.2008.03993.x

关键词

calcium; cholesterol; exocytosis; negative curvature; secretory vesicle; sphingomyelin; stalk-pore; microdomain; thiol-reactivity

资金

  1. Canadian Institutes of Health Research (CIHR)
  2. Alberta Heritage Foundation for Medical Research (AHFMR)
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Ca2+-triggered membrane fusion is the defining step of exocytosis. Despite realization that the fusion machinery must include lipids and proteins working in concert, only of late has work in the field focused more equally on both these components. Here we use isolated sea urchin egg cortical vesicles (CV), a stage-specific preparation of Ca2+-sensitive release-ready vesicles that enables the tight coupling of molecular and functional analyses necessary to dissect molecular mechanisms. The stalk-pore hypothesis proposes that bilayer merger proceeds rapidly via transient, high-negative curvature, intermediate membrane structures. Consistent with this, cholesterol, a major component of the CV membrane, contributes to a critical local negative curvature that supports formation of lipidic fusion intermediates. Following cholesterol depletion, structurally dissimilar lipids having intrinsic negative curvature greater than or equal to cholesterol recover the ability of CV to fuse but do not recover fusion efficiency (Ca2+ sensitivity and kinetics). Conversely, cholesterol- and sphingomyelin-enriched microdomains regulate the efficiency of the fusion mechanism, presumably by contributing spatial and functional organization of other critical lipids and proteins at the fusion site. Critical proteins are thought to participate in Ca2+ sensing, initiating membrane deformations, and facilitating fusion pore expansion. Capitalizing on a novel effect of the thiol-reactive reagent iodoacetamide (IA), potentiation of the Ca2+ sensitivity and kinetics, a fluorescently tagged IA has been used to enhance fusion efficiency and simultaneously label the proteins involved. Isolation of cholesterol-enriched CV membrane fractions, using density gradient centrifugation, is being used to narrow the list of protein candidates potentially critical to the mechanism of fast Ca2+-triggered membrane fusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据