4.7 Article Proceedings Paper

Immunology, Signal Transduction, and Behavior in Hypothalamic-Pituitary-Adrenal Axis-related Genetic Mouse Models

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1749-6632.2008.03967.x

关键词

HPA axis; mouse models; beta-endorphin; CRH; CRF; ERK; MAPK; stress; behavior; forced swim test; stress-coping behavior

资金

  1. Max Planck Society, Germany
  2. University of Buenos Aires (UBA)
  3. Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
  4. Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCYT), Argentina
  5. European Molecular Biology Organization
  6. Fonds der Chemischen Industrie

向作者/读者索取更多资源

A classical view of the neuroendocrine-immune network assumes bidirectional interactions where pro-inflammatory cytokines influence hypothalamic-pituitary-adrenal (HPA) axis-derived hormones that subsequently affect cytokines in a permanently servo-controlled circle. Nevertheless, this picture has been continuously evolving over the last years as a result of the discovery of redundant expression and extended functions of many of the molecules implicated. Thus, cytokines are not only expressed in cells of the immune system but also in the central nervous system, and many hormones present at hypothalamic-pituitary level are also functionally expressed in the brain as well as in other peripheral organs, including immune cells. Because of this intermingled network of molecules redundantly expressed, the elucidation of the unique roles of HPA axis-related molecules at every level of complexity is one of the major challenges in the field. Genetic engineering in the mouse offers the most convincing method for dissecting in vivo the specific roles of distinct molecules acting in complex networks. Thus, various immunological, behavioral, and signal transduction studies performed with different HPA axis-related mutant mouse lines to delineate the roles of beta-endorphin, the type 1 receptor of corticotropin-releasing hormone (CRHR1), and its ligand CRH will be discussed here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据